2 resultados para solar system : formation
em Universita di Parma
Resumo:
Among the Solar System’s bodies, Moon, Mercury and Mars are at present, or have been in the recent years, object of space missions aimed, among other topics, also at improving our knowledge about surface composition. Between the techniques to detect planet’s mineralogical composition, both from remote and close range platforms, visible and near-infrared reflectance (VNIR) spectroscopy is a powerful tool, because crystal field absorption bands are related to particular transitional metals in well-defined crystal structures, e.g., Fe2+ in M1 and M2 sites of olivine or pyroxene (Burns, 1993). Thanks to the improvements in the spectrometers onboard the recent missions, a more detailed interpretation of the planetary surfaces can now be delineated. However, quantitative interpretation of planetary surface mineralogy could not always be a simple task. In fact, several factors such as the mineral chemistry, the presence of different minerals that absorb in a narrow spectral range, the regolith with a variable particle size range, the space weathering, the atmosphere composition etc., act in unpredictable ways on the reflectance spectra on a planetary surface (Serventi et al., 2014). One method for the interpretation of reflectance spectra of unknown materials involves the study of a number of spectra acquired in the laboratory under different conditions, such as different mineral abundances or different particle sizes, in order to derive empirical trends. This is the methodology that has been followed in this PhD thesis: the single factors previously listed have been analyzed, creating, in the laboratory, a set of terrestrial analogues with well-defined composition and size. The aim of this work is to provide new tools and criteria to improve the knowledge of the composition of planetary surfaces. In particular, mixtures composed with different content and chemistry of plagioclase and mafic minerals have been spectroscopically analyzed at different particle sizes and with different mineral relative percentages. The reflectance spectra of each mixture have been analyzed both qualitatively (using the software ORIGIN®) and quantitatively applying the Modified Gaussian Model (MGM, Sunshine et al., 1990) algorithm. In particular, the spectral parameter variations of each absorption band have been evaluated versus the volumetric FeO% content in the PL phase and versus the PL modal abundance. This delineated calibration curves of composition vs. spectral parameters and allow implementation of spectral libraries. Furthermore, the trends derived from terrestrial analogues here analyzed and from analogues in the literature have been applied for the interpretation of hyperspectral images of both plagioclase-rich (Moon) and plagioclase-poor (Mars) bodies.
Resumo:
The Firenzuola turbidite system formed during a paroxysmal phase of thrust propagation, involving the upper Serravallian deposits of the Marnoso-arenacea Formation (MAF). During this phase the coeval growth of two major tectonic structures, the M. Castellaccio thrust and the Verghereto high, played a key role, causing a closure of the inner basin and a coeval shift of the depocentre to the outer basin. This work focuses on this phase of fragmentation of the MAF basin; it is based on a new detailed high-resolution stratigraphic framework, which was used to determine the timing of growth of the involved structures and their direct influence on sediment dispersal and on the lateral and vertical turbidite facies distribution. The Firenzuola turbidite system stratigraphy is characterized by the occurrence of mass-transport complexes (MTCs) and thick sandstone accumulation in the depocentral area, which passes to finer drape over the structural highs; the differentiation between these two zones increases over time and ends with the deposition of marly units over the structural highs and the emplacement of the Visignano MTC. According to the stratigraphic pattern and turbidite facies characteristics, the Firenzuola System has been split into two phases, namely Firenzuola I and Firenzuola II: the former is quite similar to the underlying deposits, while the latter shows the main fragmentation phase, testifying the progressive isolation of the inner basin and a coeval shift of the depocentre to the outer basin. The final stratigraphic and sedimentological dataset has been used to create a quantitative high-resolution 3D facies distribution using the Petrel software platform. This model allows a detailed analysis of lateral and vertical facies variations that can be exported to several reservoirs settings in hydrocarbon exploration and exploitation areas, since facies distributions and geometries of the reservoir bodies of many sub-surface turbidite basins show a significant relationship to the syndepositional structural activity, but are beyond seismic resolution.