2 resultados para priming

em Universita di Parma


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Three studies investigated the relation between symbolic gestures and words, aiming at discover the neural basis and behavioural features of the lexical semantic processing and integration of the two communicative signals. The first study aimed at determining whether elaboration of communicative signals (symbolic gestures and words) is always accompanied by integration with each other and, if present, this integration can be considered in support of the existence of a same control mechanism. Experiment 1 aimed at determining whether and how gesture is integrated with word. Participants were administered with a semantic priming paradigm with a lexical decision task and pronounced a target word, which was preceded by a meaningful or meaningless prime gesture. When meaningful, the gesture could be either congruent or incongruent with word meaning. Duration of prime presentation (100, 250, 400 ms) randomly varied. Voice spectra, lip kinematics, and time to response were recorded and analyzed. Formant 1 of voice spectra, and mean velocity in lip kinematics increased when the prime was meaningful and congruent with the word, as compared to meaningless gesture. In other words, parameters of voice and movement were magnified by congruence, but this occurred only when prime duration was 250 ms. Time to response to meaningful gesture was shorter in the condition of congruence compared to incongruence. Experiment 2 aimed at determining whether the mechanism of integration of a prime word with a target word is similar to that of a prime gesture with a target word. Formant 1 of the target word increased when word prime was meaningful and congruent, as compared to meaningless congruent prime. Increase was, however, present for whatever prime word duration. In the second study, experiment 3 aimed at determining whether symbolic prime gesture comprehension makes use of motor simulation. Transcranial Magnetic Stimulation was delivered to left primary motor cortex 100, 250, 500 ms after prime gesture presentation. Motor Evoked Potential of First Dorsal Interosseus increased when stimulation occurred 100 ms post-stimulus. Thus, gesture was understood within 100ms and integrated with the target word within 250 ms. Experiment 4 excluded any hand motor simulation in order to comprehend prime word. The effect of the prior presentation of a symbolic gesture on congruent target word processing was investigated in study 3. In experiment 5, symbolic gestures were presented as primes, followed by semantically congruent target word or pseudowords. In this case, lexical-semantic decision was accompanied by a motor simulation at 100ms after the onset of the verbal stimuli. Summing up, the same type of integration with a word was present for both prime gesture and word. It was probably subsequent to understanding of the signal, which used motor simulation for gesture and direct access to semantics for words. However, gesture and words could be understood at the same motor level through simulation if words were preceded by an adequate gestural context. Results are discussed in the prospective of a continuum between transitive actions and emblems, in parallelism with language; the grounded/symbolic content of the different signals evidences relation between sensorimotor and linguistic systems, which could interact at different levels.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Response inhibition is the ability to suppress inadequate but automatically activated, prepotent or ongoing response tendencies. In the framework of motor inhibition, two distinct operating strategies have been described: “proactive” and “reactive” control modes. In the proactive modality, inhibition is recruited in advance by predictive signals, and actively maintained before its enactment. Conversely, in the reactive control mode, inhibition is phasically enacted after the detection of the inhibitory signal. To date, ample evidence points to a core cerebral network for reactive inhibition comprising the right inferior frontal gyrus (rIFG), the presupplementary motor area (pre-SMA) and the basal ganglia (BG). Moreover, fMRI studies showed that cerebral activations during proactive and reactive inhibition largely overlap. These findings suggest that at least part of the neural network for reactive inhibition is recruited in advance, priming cortical regions in preparation for the upcoming inhibition. So far, proactive and reactive inhibitory mechanisms have been investigated during tasks in which the requested response to be stopped or withheld was an “overt” action execution (AE) (i.e., a movement effectively performed). Nevertheless, inhibitory mechanisms are also relevant for motor control during “covert actions” (i.e., potential motor acts not overtly performed), such as motor imagery (MI). MI is the conscious, voluntary mental rehearsal of action representations without any overt movement. Previous studies revealed a substantial overlap of activated motor-related brain networks in premotor, parietal and subcortical regions during overtly executed and imagined movements. Notwithstanding this evidence for a shared set of cerebral regions involved in encoding actions, whether or not those actions are effectively executed, the neural bases of motor inhibition during MI, preventing covert action from being overtly performed, in spite of the activation of the motor system, remain to be fully clarified. Taking into account this background, we performed a high density EEG study evaluating cerebral mechanisms and their related sources elicited during two types of cued Go/NoGo task, requiring the execution or withholding of an overt (Go) or a covert (MI) action, respectively. The EEG analyses were performed in two steps, with different aims: 1) Analysis of the “response phase” of the cued overt and covert Go/NoGo tasks, for the evaluation of reactive inhibitory control of overt and covert actions. 2) Analysis of the “preparatory phase” of the cued overt and covert Go/NoGo EEG datasets, focusing on cerebral activities time-locked to the preparatory signals, for the evaluation of proactive inhibitory mechanisms and their related neural sources. For these purposes, a spatiotemporal analysis of the scalp electric fields was applied on the EEG data recorded during the overt and covert Go/NoGo tasks. The spatiotemporal approach provide an objective definition of time windows for source analysis, relying on the statistical proof that the electric fields are different and thus generated by different neural sources. The analysis of the “response phase” revealed that key nodes of the inhibitory circuit, underpinning inhibition of the overt movement during the NoGo response, were also activated during the MI enactment. In both cases, inhibition relied on the activation of pre-SMA and rIFG, but with different temporal patterns of activation in accord with the intended “covert” or “overt” modality of motor performance. During the NoGo condition, the pre-SMA and rIFG were sequentially activated, pointing to an early decisional role of pre-SMA and to a later role of rIFG in the enactment of inhibitory control of the overt action. Conversely, a concomitant activation of pre-SMA and rIFG emerged during the imagined motor response. This latter finding suggested that an inhibitory mechanism (likely underpinned by the rIFG), could be prewired into a prepared “covert modality” of motor response, as an intrinsic component of the MI enactment. This mechanism would allow the rehearsal of the imagined motor representations, without any overt movement. The analyses of the “preparatory phase”, confirmed in both overt and covert Go/NoGo tasks the priming of cerebral regions pertaining to putative inhibitory network, reactively triggered in the following response phase. Nonetheless, differences in the preparatory strategies between the two tasks emerged, depending on the intended “overt” or “covert” modality of the possible incoming motor response. During the preparation of the overt Go/NoGo task, the cue primed the possible overt response programs in motor and premotor cortex. At the same time, through preactivation of a pre-SMA-related decisional mechanism, it triggered a parallel preparation for the successful response selection and/or inhibition during the subsequent response phase. Conversely, the preparatory strategy for the covert Go/NoGo task was centred on the goal-oriented priming of an inhibitory mechanism related to the rIFG that, being tuned to the instructed covert modality of the motor performance and instantiated during the subsequent MI enactment, allowed the imagined response to remain a potential motor act. Taken together, the results of the present study demonstrate a substantial overlap of cerebral networks activated during proactive recruitment and subsequent reactive enactment of motor inhibition in both overt and covert actions. At the same time, our data show that preparatory cues predisposed ab initio a different organization of the cerebral areas (in particular of the pre-SMA and rIFG) involved with sensorimotor transformations and motor inhibitory control for executed and imagined actions. During the preparatory phases of our cued overt and covert Go/NoGo tasks, the different adopted strategies were tuned to the “how” of the motor performance, reflecting the intended overt and covert modality of the possible incoming action.