2 resultados para data-driven Stochastic Subspace Identification (SSI-data)

em Universita di Parma


Relevância:

50.00% 50.00%

Publicador:

Resumo:

Of the ~1.7 million SINE elements in the human genome, only a tiny number are estimated to be active in transcription by RNA polymerase (Pol) III. Tracing the individual loci from which SINE transcripts originate is complicated by their highly repetitive nature. By exploiting RNA-Seq datasets and unique SINE DNA sequences, we devised a bioinformatic pipeline allowing us to identify Pol III-dependent transcripts of individual SINE elements. When applied to ENCODE transcriptomes of seven human cell lines, this search strategy identified ~1300 Alu loci and ~1100 MIR loci corresponding to detectable transcripts, with ~120 and ~60 respectively Alu and MIR loci expressed in at least three cell lines. In vitro transcription of selected SINEs did not reflect their in vivo expression properties, and required the native 5’-flanking region in addition to internal promoter. We also identified a cluster of expressed AluYa5-derived transcription units, juxtaposed to snaR genes on chromosome 19, formed by a promoter-containing left monomer fused to an Alu-unrelated downstream moiety. Autonomous Pol III transcription was also revealed for SINEs nested within Pol II-transcribed genes raising the possibility of an underlying mechanism for Pol II gene regulation by SINE transcriptional units. Moreover the application of our bioinformatic pipeline to both RNA-seq data of cells subjected to an in vitro pro-oncogenic stimulus and of in vivo matched tumor and non-tumor samples allowed us to detect increased Alu RNA expression as well as the source loci of such deregulation. The ability to investigate SINE transcriptomes at single-locus resolution will facilitate both the identification of novel biologically relevant SINE RNAs and the assessment of SINE expression alteration under pathological conditions.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The Internet of Things (IoT) consists of a worldwide “network of networks,” composed by billions of interconnected heterogeneous devices denoted as things or “Smart Objects” (SOs). Significant research efforts have been dedicated to port the experience gained in the design of the Internet to the IoT, with the goal of maximizing interoperability, using the Internet Protocol (IP) and designing specific protocols like the Constrained Application Protocol (CoAP), which have been widely accepted as drivers for the effective evolution of the IoT. This first wave of standardization can be considered successfully concluded and we can assume that communication with and between SOs is no longer an issue. At this time, to favor the widespread adoption of the IoT, it is crucial to provide mechanisms that facilitate IoT data management and the development of services enabling a real interaction with things. Several reference IoT scenarios have real-time or predictable latency requirements, dealing with billions of device collecting and sending an enormous quantity of data. These features create a new need for architectures specifically designed to handle this scenario, hear denoted as “Big Stream”. In this thesis a new Big Stream Listener-based Graph architecture is proposed. Another important step, is to build more applications around the Web model, bringing about the Web of Things (WoT). As several IoT testbeds have been focused on evaluating lower-layer communication aspects, this thesis proposes a new WoT Testbed aiming at allowing developers to work with a high level of abstraction, without worrying about low-level details. Finally, an innovative SOs-driven User Interface (UI) generation paradigm for mobile applications in heterogeneous IoT networks is proposed, to simplify interactions between users and things.