2 resultados para activity recognition

em Universita di Parma


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Plants can defend themselves from potential pathogenic microorganisms relying on a complex interplay of signaling pathways: activation of the MAPK cascade, transcription of defense related genes, production of reactive oxygen species, nitric oxide and synthesis of other defensive compounds such as phytoalexins. These events are triggered by the recognition of pathogen’s effectors (effector-triggered immunity) or PAMPs (PAMP-triggered immunity). The Cerato Platanin Family (CPF) members are Cys-rich proteins secreted and localized on fungal cell walls, involved in several aspects of fungal development and pathogen-host interactions. Although more than hundred genes of the CPF have been identified and analyzed, the structural and functional characterization of the expressed proteins has been restricted only to few members of the family. Interestingly, those proteins have been shown to bind chitin with diverse affinity and after foliar treatment they elicit defensive mechanisms in host and non-host plants. This property turns cerato platanins into interesting candidates, worth to be studied to develop new fungal elicitors with applications in sustainable agriculture. This study focus on cerato-platanin (CP), core member of the family and on the orthologous cerato-populin (Pop1). The latter shows an identity of 62% and an overall homology of 73% with respect to CP. Both proteins are able to induce MAPKs phosphorylation, production of reactive oxygen species and nitric oxide, overexpression of defense’s related genes, programmed cell death and synthesis of phytoalexins. CP, however, when compared to Pop1, induces a faster response and, in some cases, a stronger activity on plane leaves. Aim of the present research is to verify if the dissimilarities observed in the defense elicitation activity of these proteins can be associated to their structural and dynamic features. Taking advantage of the available CP NMR structure, Pop1’s 3D one was obtained by homology modeling. Experimental residual dipolar couplings and 1H, 15N, 13C resonance assignments were used to validate the model. Previous works on CPF members, addressed the highly conserved random coil regions (loops b1-b2 and b2-b3) as sufficient and necessary to induce necrosis in plants’ leaves: that region was investigated in both Pop1 and CP. In the two proteins the loops differ, in their primary sequence, for few mutations and an insertion with a consequent diversification of the proteins’ electrostatic surface. A set of 2D and 3D NMR experiments was performed to characterize both the spatial arrangement and the dynamic features of the loops. NOE data revealed a more extended network of interactions between the loops in Pop1 than in CP. In addition, in Pop1 we identified a salt bridge Lys25/Asp52 and a strong hydrophobic interaction between Phe26/Trp53. These structural features were expected not only to affect the loops’ spatial arrangement, but also to reduce the degree of their conformational freedom. Relaxation data and the order parameter S2 indeed highlighted reduced flexibility, in particular for loop b1-b2 of Pop1. In vitro NMR experiments, where Pop1 and CP were titrated with oligosaccharides, supported the hypothesis that the loops structural and dynamic differences may be responsible for the different chitin-binding properties of the two proteins: CP selectively binds tetramers of chitin in a shallow groove on one side of the barrel defined by loops b1-b2, b2-b3 and b4-b5, Pop1, instead, interacts in a non-specific fashion with oligosaccharides. Because the region involved in chitin-binding is also responsible for the defense elicitation activity, possibly being recognized by plant's receptors, it is reasonable to expect that those structural and dynamic modifications may also justify the different extent of defense elicitation. To test that hypothesis, the initial steps of a protocol aimed to the identify a receptor for CP, in silico, are presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One of the challenges that concerns chemistry is the design of molecules able to modulate protein-protein and protein-ligand interactions, since these are involved in many physiological and pathological processes. The interactions occurring between proteins and their natural counterparts can take place through reciprocal recognition of rather large surface areas, through recognition of single contact points and single residues, through inclusion of the substrates in specific, more or less deep binding sites. In many cases, the design of synthetic molecules able to interfere with the processes involving proteins can benefit from the possibility of exploiting the multivalent effect. Multivalency, widely spread in Nature, consists in the simultaneous formation between two entities (cell-cell, cell-protein, protein-protein) of multiple equivalent ligand-recognition site complexes. In this way the whole interaction results particularly strong and specific. Calixarenes furnish a very interesting scaffold for the preparation of multivalent ligands and in the last years calixarene-based ligands demonstrated their remarkable capability to recognize and inhibit or restore the activity of different proteins, with a high efficiency and selectivity in several recognition phenomena. The relevance and versatility of these ligands is due to the different exposition geometries of the binding units that can be explored exploiting the conformational properties of these macrocycles, the wide variety of functionalities that can be linked to their structure at different distances from the aromatic units and to their intrinsic multivalent nature. With the aim of creating new multivalent systems for protein targeting, the work reported in this thesis regards the synthesis and properties of glycocalix[n]arenes and guanidino calix[4]arenes for different purposes. Firstly, a new bolaamphiphile glycocalix[4]arene in 1,3-alternate geometry, bearing cellobiose, was synthesized for the preparation of targeted drug delivery systems based on liposomes. The formed stable mixed liposomes obtained by mixing the macrocycle with DOPC were shown to be able of exploiting the sugar units emerging from the lipid bilayer to agglutinate Concanavalin A, a lectin specific for glucose. Moreover, always thanks to the presence of the glycocalixarene in the layer, the same liposomes demonstrated through preliminary experiments to be uptaken by cancer cells overexpressing glucose receptors on their exterior surface more efficiently respect to simple DOPC liposomes lacking glucose units in their structure. Then a small library of glycocalix[n]arenes having different valency and geometry was prepared, for the creation of potentially active immunostimulants against Streptococcus pneumoniae, particularly the 19F serotype, one of the most virulent. These synthesized glycocalixarenes bearing β-N-acetylmannosamine as antigenic unit were compared with the natural polysaccharide on the binding to the specific anti-19F human polyclonal antibody, to verify their inhibition potency. Among all, the glycocalixarene based on the conformationally mobile calix[4]arene resulted the more efficient ligand, probably due its major possibility to explore the antibody surface and dispose the antigenic units in a proper arrangement for the interaction process. These results pointed out the importance of how the different multivalent presentation in space of the glycosyl units can influence the recognition phenomena. At last, NMR studies, using particularly 1H-15N HSQC experiments, were performed on selected glycocalix[6]arenes and guanidino calix[4]arenes blocked in the cone geometry, in order to better understand protein-ligand interactions. The glycosylated compounds were studied with Ralstonia solanacearum lectin, in order to better understand the nature of the carbohydrate‐lectin interactions in solution. The series of cationic calixarene was employed with three different acidic proteins: GB1, Fld and alpha synuclein. Particularly GB1 and Fld were observed to interact with all five cationic calix[4]arenes but showing different behaviours and affinities.