2 resultados para Smart Antennas

em Universita di Parma


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this thesis the molecular level design of functional materials and systems is reported. In the first part, tetraphosphonate cavitand (Tiiii) recognition properties towards amino acids are studied both in the solid state, through single crystal X-ray diffraction, and in solution, via NMR and ITC experiments. The complexation ability of these supramolecular receptors is then applied to the detection of biologically remarkable N-methylated amino acids and peptides using complex dynamic emulsions-based sensing platforms. In the second part, a general supramolecular approach for surface decoration with single-molecule magnets (SMMs) is presented. The self-assembly of SMMs is achieved through the formation of a multiple hydrogen bonds architecture (UPy-NaPy complexation). Finally we explore the possibility to impart auxetic behavior to polymeric material through the introduction of conformationally switchable monomers, namely tetraquinoxaline cavitands (QxCav). Their interconversion from a closed vase conformation to an extended kite form is studied first in solution, then in polymeric matrixes via pH and tensile stimuli by UV-Vis spectroscopy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Internet of Things (IoT) can be defined as a “network of networks” composed by billions of uniquely identified physical Smart Objects (SO), organized in an Internet-like structure. Smart Objects can be items equipped with sensors, consumer devices (e.g., smartphones, tablets, or wearable devices), and enterprise assets that are connected both to the Internet and to each others. The birth of the IoT, with its communications paradigms, can be considered as an enabling factor for the creation of the so-called Smart Cities. A Smart City uses Information and Communication Technologies (ICT) to enhance quality, performance and interactivity of urban services, ranging from traffic management and pollution monitoring to government services and energy management. This thesis is focused on multi-hop data dissemination within IoT and Smart Cities scenarios. The proposed multi-hop techniques, mostly based on probabilistic forwarding, have been used for different purposes: from the improvement of the performance of unicast protocols for Wireless Sensor Networks (WSNs) to the efficient data dissemination within Vehicular Ad-hoc NETworks (VANETs).