5 resultados para Single Molecule Magnets (SMMs), 1H NMR, 13C NMR, residual dipolar couplings (RDCs)

em Universita di Parma


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this thesis the molecular level design of functional materials and systems is reported. In the first part, tetraphosphonate cavitand (Tiiii) recognition properties towards amino acids are studied both in the solid state, through single crystal X-ray diffraction, and in solution, via NMR and ITC experiments. The complexation ability of these supramolecular receptors is then applied to the detection of biologically remarkable N-methylated amino acids and peptides using complex dynamic emulsions-based sensing platforms. In the second part, a general supramolecular approach for surface decoration with single-molecule magnets (SMMs) is presented. The self-assembly of SMMs is achieved through the formation of a multiple hydrogen bonds architecture (UPy-NaPy complexation). Finally we explore the possibility to impart auxetic behavior to polymeric material through the introduction of conformationally switchable monomers, namely tetraquinoxaline cavitands (QxCav). Their interconversion from a closed vase conformation to an extended kite form is studied first in solution, then in polymeric matrixes via pH and tensile stimuli by UV-Vis spectroscopy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Plants can defend themselves from potential pathogenic microorganisms relying on a complex interplay of signaling pathways: activation of the MAPK cascade, transcription of defense related genes, production of reactive oxygen species, nitric oxide and synthesis of other defensive compounds such as phytoalexins. These events are triggered by the recognition of pathogen’s effectors (effector-triggered immunity) or PAMPs (PAMP-triggered immunity). The Cerato Platanin Family (CPF) members are Cys-rich proteins secreted and localized on fungal cell walls, involved in several aspects of fungal development and pathogen-host interactions. Although more than hundred genes of the CPF have been identified and analyzed, the structural and functional characterization of the expressed proteins has been restricted only to few members of the family. Interestingly, those proteins have been shown to bind chitin with diverse affinity and after foliar treatment they elicit defensive mechanisms in host and non-host plants. This property turns cerato platanins into interesting candidates, worth to be studied to develop new fungal elicitors with applications in sustainable agriculture. This study focus on cerato-platanin (CP), core member of the family and on the orthologous cerato-populin (Pop1). The latter shows an identity of 62% and an overall homology of 73% with respect to CP. Both proteins are able to induce MAPKs phosphorylation, production of reactive oxygen species and nitric oxide, overexpression of defense’s related genes, programmed cell death and synthesis of phytoalexins. CP, however, when compared to Pop1, induces a faster response and, in some cases, a stronger activity on plane leaves. Aim of the present research is to verify if the dissimilarities observed in the defense elicitation activity of these proteins can be associated to their structural and dynamic features. Taking advantage of the available CP NMR structure, Pop1’s 3D one was obtained by homology modeling. Experimental residual dipolar couplings and 1H, 15N, 13C resonance assignments were used to validate the model. Previous works on CPF members, addressed the highly conserved random coil regions (loops b1-b2 and b2-b3) as sufficient and necessary to induce necrosis in plants’ leaves: that region was investigated in both Pop1 and CP. In the two proteins the loops differ, in their primary sequence, for few mutations and an insertion with a consequent diversification of the proteins’ electrostatic surface. A set of 2D and 3D NMR experiments was performed to characterize both the spatial arrangement and the dynamic features of the loops. NOE data revealed a more extended network of interactions between the loops in Pop1 than in CP. In addition, in Pop1 we identified a salt bridge Lys25/Asp52 and a strong hydrophobic interaction between Phe26/Trp53. These structural features were expected not only to affect the loops’ spatial arrangement, but also to reduce the degree of their conformational freedom. Relaxation data and the order parameter S2 indeed highlighted reduced flexibility, in particular for loop b1-b2 of Pop1. In vitro NMR experiments, where Pop1 and CP were titrated with oligosaccharides, supported the hypothesis that the loops structural and dynamic differences may be responsible for the different chitin-binding properties of the two proteins: CP selectively binds tetramers of chitin in a shallow groove on one side of the barrel defined by loops b1-b2, b2-b3 and b4-b5, Pop1, instead, interacts in a non-specific fashion with oligosaccharides. Because the region involved in chitin-binding is also responsible for the defense elicitation activity, possibly being recognized by plant's receptors, it is reasonable to expect that those structural and dynamic modifications may also justify the different extent of defense elicitation. To test that hypothesis, the initial steps of a protocol aimed to the identify a receptor for CP, in silico, are presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, new coordination polymers based on two different classes of synthons are presented. In addition, manganese-based metallacrowns of magnetic interest are studied, both in the solid state and in solution. Firstly, functionalized bispyrazolylmethane derivatives are employed as bridging ligands for the establishment of silver-based coordination polymers; the influence of the substituent groups and of the counterions on the supramolecular packing is also investigated. Secondly, the use of metallacrown (MC) complexes as building blocks for porous coordination polymers is discussed. The design of a new metallacrown species is presented, which shows the tendency of aggregating in the solid state to form coordination polymers. Two new coordination polymers are indeed reported, of which one is the first MC-based permanently porous coordination network ever presented. The solid resists solvent evacuation and exhibits gas uptake ability. Furthermore, the isolation and characterization of a new metallacryptate species based on manganese ions is described. The metal-rich structure comprises nine Mn(II)/Mn(III) ions and presents an inverse metallacrown core subunit that binds a μ3-O2- ion. The metallacryptate is isolated in high yields and stable in solution. Lastly, a family of 3d-4f heterometallic metallacrowns is characterized in solution by means of UV-Vis spectrophotometry and of paramagnetically shifted 1H-NMR. The lanthanide-induced shifts observed in the spectra are employed to describe the molecules behaviour in solution and are qualitatively related to the magnetic properties of the compounds.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lactose, in particular α-lactose monohydrate, is the most used carrier for inhalation. Its surface and solid-state properties are of paramount importance in determining drug aerosolization performance. However, these properties may be altered by processing, such as micronization, thus affecting the product performance and stability. The present research project focused on the study of the effect of lactose solid-state on the aerosolization performance of drug-carrier mixtures, giving particular attention to the impact of micronization on lactose physico-chemical properties. The formation of a fraction of hygroscopic anhydrous α-lactose, rather than amorphous lactose, as a consequence of the mechanical stress stemming from micronization was evidenced by 1H NMR, XRPD and DSC analyses performed on samples of micronized lactose. The development of a new DVS method capable to identify and quantify different forms of α-lactose (hygroscopic anhydrous, stable anhydrous and amorphous), even simultaneously present in the same sample, confirmed the results obtained with the above-mentioned techniques. The influence of lactose solid-state on drug respirability was then evaluated through the preparation and in vitro aerodynamic assessment of ternary and binary mixtures containing two different drugs. In particular, the use, as carriers, of anhydrous forms of α-lactose in place of the conventional α-lactose monohydrate resulted in significantly improved respirability in the case of salbutamol sulphate and poorer performance in the case of budesonide. In an attempt to rationalize the obtained results, IGC was selected as a tool to investigate possible variations in the surface energy of the studied lactose carriers and APIs. A direct correlation between the total surface free energy of lactose carriers and drug respirability was not found. However, salbutamol sulphate and budesonide exhibited different specific surface free energy, to which the difference in the aerosolization performance may be, at least in part, ascribed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La presente tesi di dottorato ha riguardato l'indagine fitochimica della biodiversità spontanea di Humulus lupulus L. in Emilia Romagna e la valutazione degli effetti del clima dell'Italia settentrionale sul metabolismo secondario di cultivar di luppolo. In particolare, lo studio ha previsto l'individuazione di ecotipi di luppolo provenienti da zone planiziali e collinari di'Emilia Romagna e Lombardia, la loro messa a dimora in un campo collezione appositamente allestito, e il monitoraggio della resa di campo e della produzione di metaboliti secondari di natura polare (acilfluoroglucinoli, flavonidi isoprenilati) e apolare (terpeni e sequiterpeni). Gli obiettivi primari sono stati la valutazione di entità da portare direttamente in coltivazione o da introdurre in percorsi di breeding del luppolo in Italia, oltre all'ottimizzazione di metodi innovativi per lo screening dell'intero germoplasma italiano. Per definire le caratteristiche fitochimiche dei coni di luppolo sono stati messi a punto metodi cromatografici HPLC-UV, HPLC-MS/MS e GC-MS e metodi spettroscopici 1H-NMR. Nel corso del triennio i metodi sono stati applicati a 10 cultivar e oltre 30 ecotipi , alcuni dei quali hanno fornito dati anche a conclusione dell'intero periodo di acclimatazione. Per tutti si è anche verificata la resilienza alle diverse condizioni climatiche incontrate Le analisi chimiche hanno permesso di individuare una sostanziale differenza tra gli ecotipi e le cultivar, con i primi che si caratterizzano per una produzione modesta di α-acidi e β-acidi e un profilo aromatico ricco di isomeri del selinene. Questo risultato può essere interessante per l’industria della birra nazionale e in particolare per il settore dei microbirrifici artigianali, in quanto i luppoli più pregiati sono proprio quelli con un basso contenuto di acidi amari e ricchi di oli essenziali che possano impartire alle birre prodotte note aromatiche particolari e legate al territorio. L’indagine agronomica monitorata su tre anni di produzione ha anche fatto emergere la resistenza degli ecotipi italiani al clima caldo e siccitoso e ha evidenziato invece come le cultivar estere abbiano limiti fisiologici a queste condizioni. Confrontando il profilo fitochimico delle cultivar coltivate in Italia con i prodotti acquistati nei paesi d’origine è emerso che il metabolismo secondario per alcune cultivar è particolarmente differente, come nel caso della cultivar Marynka, che rispetto agli standard commerciali ha prodotto in Italia coni ricchi di oli essenziali con alte quantità di trans-β-farnesene, cambiandone le caratteristiche da varietà amaricante ad aromatica. I risultati ottenuti dimostrano la fattibilità della coltivazione di Humulus lupulus L. sul territorio nazionale con ottime prospettive di produttività per gli ecotipi italiani. Inoltre da questi primi risultati è ora possibile intraprendere un programma di breeding per la creazione di nuove varietà, più resistenti al caldo e con le caratteristiche desiderate in base all’utilizzo del prodotto, sia per quanto riguarda l’industria della birra, sia la cosmetico-farmaceutica per la produzione di estratti.