2 resultados para Ready-to-eat (RTE)
em Universita di Parma
Resumo:
Ready to eat pasta meals are an important segment of convenience food, but these products are subjected to significant changes in physico-chemical properties during storage, which reduce their acceptability at the time of consumption. A deep understanding of the properties of the single phases, their dependence upon formulation, and the changes they undergo during storage is very important to intelligently intervene on products properties to improve their quality at the time of consumer’s consumption. This work has focused on the effect of formulation on physico-chemical properties of pasta and tomato sauce with a special focus on mechanical/rheological attributes and water status. Variable considered in pasta formulation were gluten, glycerol and moisture content and their effect was studied in both freshly cooked or shelf-stable cooked pasta. The effect of multiple hydrocolloids (at different levels) was considered in the case of tomato sauce. In the case of pasta, it was found that water content was indeed a very important variable in defying pasta mechanical properties and water status. Higher moisture contents in pasta resulted in softer samples and reduced the changes in physico-chemical parameters during storage. Glycerol was found to favor water uptake and to soften the pasta matrix, acting as plasticizer and increasing molecular mobility. The addition of gluten hardened pasta but did not affect the water status. The combination of higher amount of gluten (15%, g gluten / 100 g product) with higher moisture content (59-65%, g water / 100 g product) were found to minimize the physico-chemical changes occurring in RTE pasta meals during storage, improving quality at longer storage times. Hydrocolloids added into tomato sauce modulated its mechanical attributes and water status in very different manner, depending on hydrocolloid type and concentration. This may allow to produce tomato sauce for different applications and that are expected to have different performance if placed in contact with pasta in a RTE meal. Future work should include an investigation of how the interaction between the two phases (pasta and sauce) can be modulated and controlled by controlling the properties of the single phases with the goal of obtaining highly acceptable products also at longer storage times.
Resumo:
Action selection and organization are very complex processes that need to exploit contextual information and the retrieval of previously memorized information, as well as the integration of these different types of data. On the basis of anatomical connection with premotor and parietal areas involved in action goal coding, and on the data about the literature it seems appropriate to suppose that one of the most candidate involved in the selection of neuronal pools for the selection and organization of intentional actions is the prefrontal cortex. We recorded single ventrolateral prefrontal (VLPF) neurons activity while monkeys performed simple and complex manipulative actions aimed at distinct final goals, by employing a modified and more strictly controlled version of the grasp-to-eat(a food pellet)/grasp-to-place(an object) paradigm used in previous studies on parietal (Fogassi et al., 2005) and premotor neurons (Bonini et al., 2010). With this task we have been able both to evaluate the processing and integration of distinct (visual and auditory) contextual sequentially presented information in order to select the forthcoming action to perform and to examine the possible presence of goal-related activity in this portion of cortex. Moreover, we performed an observation task to clarify the possible contribution of VLPF neurons to the understanding of others’ goal-directed actions. Simple Visuo Motor Task (sVMT). We found four main types of neurons: unimodal sensory-driven, motor-related, unimodal sensory-and-motor, and multisensory neurons. We found a substantial number of VLPF neurons showing both a motor-related discharge and a visual presentation response (sensory-and-motor neurons), with remarkable visuo-motor congruence for the preferred target. Interestingly the discharge of multisensory neurons reflected a behavioural decision independently from the sensory modality of the stimulus allowing the monkey to make it: some encoded a decision to act/refraining from acting (the majority), while others specified one among the four behavioural alternatives. Complex Visuo Motor Task (cVMT). The cVMT was similar to the sVMT, but included a further grasping motor act (grasping a lid in order to remove it, before grasping the target) and was run in two modalities: randomized and in blocks. Substantially, motor-related and sensory-and-motor neurons tested in the cVMTrandomized were activated already during the first grasping motor act, but the selectivity for one of the two graspable targets emerged only during the execution of the second grasping. In contrast, when the cVMT was run in block, almost all these neurons not only discharged during the first grasping motor act, but also displayed the same target selectivity showed in correspondence of the hand contact with the target. Observation Task (OT). A great part of the neurons active during the OT showed a firing rate modulation in correspondence with the action performed by the experimenter. Among them, we found neurons significantly activated during the observation of the experimenter’s action (action observation-related neurons) and neurons responding not only to the action observation, but also to the presented cue stimuli (sensory-and-action observation-related neurons. Among the neurons of the first set, almost the half displayed a target selectivity, with a not clear difference between the two presented targets; Concerning to the second neuronal set, sensory-and-action related neurons, we found a low target selectivity and a not strictly congruence between the selectivity exhibited in the visual response and in the action observation.