2 resultados para Multiple reaction monitoring
em Universita di Parma
Innovative analytical strategies for the development of sensor devices and mass spectrometry methods
Resumo:
Il lavoro presentato in questa tesi di Dottorato è incentrato sullo sviluppo di strategie analitiche innovative basate sulla sensoristica e su tecniche di spettrometria di massa in ambito biologico e della sicurezza alimentare. Il primo capitolo tratta lo studio di aspetti metodologici ed applicativi di procedure sensoristiche per l’identificazione e la determinazione di biomarkers associati alla malattia celiaca. In tale ambito, sono stati sviluppati due immunosensori, uno a trasduzione piezoelettrica e uno a trasduzione amperometrica, per la rivelazione di anticorpi anti-transglutaminasi tissutale associati a questa malattia. L’innovazione di questi dispositivi riguarda l’immobilizzazione dell’enzima tTG nella conformazione aperta (Open-tTG), che è stato dimostrato essere quella principalmente coinvolta nella patogenesi. Sulla base dei risultati ottenuti, entrambi i sistemi sviluppati si sono dimostrati una valida alternativa ai test di screening attualmente in uso per la diagnosi della celiachia. Rimanendo sempre nel contesto della malattia celiaca, ulteriore ricerca oggetto di questa tesi di Dottorato, ha riguardato lo sviluppo di metodi affidabili per il controllo di prodotti “gluten-free”. Il secondo capitolo tratta lo sviluppo di un metodo di spettrometria di massa e di un immunosensore competitivo per la rivelazione di prolammine in alimenti “gluten-free”. E’ stato sviluppato un metodo LC-ESI-MS/MS basato su un’analisi target con modalità di acquisizione del segnale selected reaction monitoring per l’identificazione di glutine in diversi cereali potenzialmente tossici per i celiaci. Inoltre ci si è focalizzati su un immunosensore competitivo per la rivelazione di gliadina, come metodo di screening rapido di farine. Entrambi i sistemi sono stati ottimizzati impiegando miscele di farina di riso addizionata di gliadina, avenine, ordeine e secaline nel caso del sistema LC-MS/MS e con sola gliadina nel caso del sensore. Infine i sistemi analitici sono stati validati analizzando sia materie prime (farine) che alimenti (biscotti, pasta, pane, etc.). L’approccio sviluppato in spettrometria di massa apre la strada alla possibilità di sviluppare un test di screening multiplo per la valutazione della sicurezza di prodotti dichiarati “gluten-free”, mentre ulteriori studi dovranno essere svolti per ricercare condizioni di estrazione compatibili con l’immunosaggio competitivo, per ora applicabile solo all’analisi di farine estratte con etanolo. Terzo capitolo di questa tesi riguarda lo sviluppo di nuovi metodi per la rivelazione di HPV, Chlamydia e Gonorrhoeae in fluidi biologici. Si è scelto un substrato costituito da strips di carta in quanto possono costituire una valida piattaforma di rivelazione, offrendo vantaggi grazie al basso costo, alla possibilità di generare dispositivi portatili e di poter visualizzare il risultato visivamente senza la necessità di strumentazioni. La metodologia sviluppata è molto semplice, non prevede l’uso di strumentazione complessa e si basa sull’uso della isothermal rolling-circle amplification per l’amplificazione del target. Inoltre, di fondamentale importanza, è l’utilizzo di nanoparticelle colorate che, essendo state funzionalizzate con una sequenza di DNA complementare al target amplificato derivante dalla RCA, ne permettono la rivelazione a occhio nudo mediante l’uso di filtri di carta. Queste strips sono state testate su campioni reali permettendo una discriminazione tra campioni positivi e negativi in tempi rapidi (10-15 minuti), aprendo una nuova via verso nuovi test altamente competitivi con quelli attualmente sul mercato.
Resumo:
This work has, as its objective, the development of non-invasive and low-cost systems for monitoring and automatic diagnosing specific neonatal diseases by means of the analysis of suitable video signals. We focus on monitoring infants potentially at risk of diseases characterized by the presence or absence of rhythmic movements of one or more body parts. Seizures and respiratory diseases are specifically considered, but the approach is general. Seizures are defined as sudden neurological and behavioural alterations. They are age-dependent phenomena and the most common sign of central nervous system dysfunction. Neonatal seizures have onset within the 28th day of life in newborns at term and within the 44th week of conceptional age in preterm infants. Their main causes are hypoxic-ischaemic encephalopathy, intracranial haemorrhage, and sepsis. Studies indicate an incidence rate of neonatal seizures of 0.2% live births, 1.1% for preterm neonates, and 1.3% for infants weighing less than 2500 g at birth. Neonatal seizures can be classified into four main categories: clonic, tonic, myoclonic, and subtle. Seizures in newborns have to be promptly and accurately recognized in order to establish timely treatments that could avoid an increase of the underlying brain damage. Respiratory diseases related to the occurrence of apnoea episodes may be caused by cerebrovascular events. Among the wide range of causes of apnoea, besides seizures, a relevant one is Congenital Central Hypoventilation Syndrome (CCHS) \cite{Healy}. With a reported prevalence of 1 in 200,000 live births, CCHS, formerly known as Ondine's curse, is a rare life-threatening disorder characterized by a failure of the automatic control of breathing, caused by mutations in a gene classified as PHOX2B. CCHS manifests itself, in the neonatal period, with episodes of cyanosis or apnoea, especially during quiet sleep. The reported mortality rates range from 8% to 38% of newborn with genetically confirmed CCHS. Nowadays, CCHS is considered a disorder of autonomic regulation, with related risk of sudden infant death syndrome (SIDS). Currently, the standard method of diagnosis, for both diseases, is based on polysomnography, a set of sensors such as ElectroEncephaloGram (EEG) sensors, ElectroMyoGraphy (EMG) sensors, ElectroCardioGraphy (ECG) sensors, elastic belt sensors, pulse-oximeter and nasal flow-meters. This monitoring system is very expensive, time-consuming, moderately invasive and requires particularly skilled medical personnel, not always available in a Neonatal Intensive Care Unit (NICU). Therefore, automatic, real-time and non-invasive monitoring equipments able to reliably recognize these diseases would be of significant value in the NICU. A very appealing monitoring tool to automatically detect neonatal seizures or breathing disorders may be based on acquiring, through a network of sensors, e.g., a set of video cameras, the movements of the newborn's body (e.g., limbs, chest) and properly processing the relevant signals. An automatic multi-sensor system could be used to permanently monitor every patient in the NICU or specific patients at home. Furthermore, a wire-free technique may be more user-friendly and highly desirable when used with infants, in particular with newborns. This work has focused on a reliable method to estimate the periodicity in pathological movements based on the use of the Maximum Likelihood (ML) criterion. In particular, average differential luminance signals from multiple Red, Green and Blue (RGB) cameras or depth-sensor devices are extracted and the presence or absence of a significant periodicity is analysed in order to detect possible pathological conditions. The efficacy of this monitoring system has been measured on the basis of video recordings provided by the Department of Neurosciences of the University of Parma. Concerning clonic seizures, a kinematic analysis was performed to establish a relationship between neonatal seizures and human inborn pattern of quadrupedal locomotion. Moreover, we have decided to realize simulators able to replicate the symptomatic movements characteristic of the diseases under consideration. The reasons is, essentially, the opportunity to have, at any time, a 'subject' on which to test the continuously evolving detection algorithms. Finally, we have developed a smartphone App, called 'Smartphone based contactless epilepsy detector' (SmartCED), able to detect neonatal clonic seizures and warn the user about the occurrence in real-time.