2 resultados para MIMO antennas
em Universita di Parma
Resumo:
In this thesis, we consider four different scenarios of interest in modern satellite communications. For each scenario, we will propose the use of advanced solutions aimed at increasing the spectral efficiency of the communication links. First, we will investigate the optimization of the current standard for digital video broadcasting. We will increase the symbol rate of the signal and determine the optimal signal bandwidth. We will apply the time packing technique and propose a specifically design constellation. We will then compare some receiver architectures with different performance and complexity. The second scenario still addresses broadcast transmissions, but in a network composed of two satellites. We will compare three alternative transceiver strategies, namely, signals completely overlapped in frequency, frequency division multiplexing, and the Alamouti space-time block code, and, for each technique, we will derive theoretical results on the achievable rates. We will also evaluate the performance of said techniques in three different channel models. The third scenario deals with the application of multiuser detection in multibeam satellite systems. We will analyze a case in which the users are near the edge of the coverage area and, hence, they experience a high level of interference from adjacent cells. Also in this case, three different approaches will be compared. A classical approach in which each beam carries information for a user, a cooperative solution based on time division multiplexing, and the Alamouti scheme. The information theoretical analysis will be followed by the study of practical coded schemes. We will show that the theoretical bounds can be approached by a properly designed code or bit mapping. Finally, we will consider an Earth observation scenario, in which data is generated on the satellite and then transmitted to the ground. We will study two channel models, taking into account one or two transmit antennas, and apply techniques such as time and frequency packing, signal predistortion, multiuser detection and the Alamouti scheme.
Resumo:
A multichannel spherical speaker array allows, together with a spherical microphones array, the measurement of the MIMO (Multiple Input Multiple Output) acoustic impulse response of an environment capturing meaningful information about propagation of sound between source an receiver. The mathematical framework for extracting arbitrary directivity virtual microphones from real microphones array signals is recalled and the application of the same method to the speakers array to generate arbitrary directivity source is presented. A convenient solutions for the construction and calibration of speakers spherical array for measurement purposes is illustrated. The postprocessing technique developed to compute and visualize acoustic path between source and receiver from measured MIMO impulse response is discussed. Real word results from measurement in a small theater are shown.