2 resultados para Gastric mucosa
em Universita di Parma
Resumo:
Helicobacter pylori è un batterio Gram-negativo in grado di colonizzare la mucosa gastrica umana e persistere per l'intero arco della vita dell'ospite. E' associato a patologie gastrointestinali, quali gastrite cronica, ulcere gastriche e duodenali, adenocarcinomi e linfomi gastrici. Si tratta di uno dei patogeni più diffusi, presente in circa metà della popolazione mondiale, e il solo che si è adattato a vivere nell'ambiente ostile dello stomaco umano. Molteplici sono i fattori di virulenza che permettono al batterio la colonizzazione della nicchia gastrica e contribuiscono, anche attraverso l' induzione di una risposta infiammatoria, a profonde modificazioni dell' omeostasi gastrica. Queste ultime si associano, ad esempio, all'iperproduzione di fattori proinfiammatori, ad alterazioni sia della regolazione della secrezione acida gastrica sia del ciclo cellulare e della morte cellulare programmata (apoptosi) delle cellule epiteliali gastriche, a disordini nel metabolismo del ferro e a carenze di elementi essenziali. Studi sulla diversità genetica di H. pylori osservata in ceppi isolati da varie regioni del mondo, dimostrano che tale batterio ha avuto una coevoluzione col genere umano attraverso la storia, ed è verosimile che H. pylori sia stato un costituente del microbiota gastrico per almeno 50.000 anni. Scopo della tesi è stato quello di identificare e caratterizzare proteine importanti per la colonizzazione e l'adattamento di H. pylori alla nicchia gastrica. In particolare gli sforzi si sono concentrati su due proteine periplasmatiche, la prima coinvolta nella difesa antiossidante (l'enzima catalasi-like, HP0485), e la seconda nel trasporto di nutrienti presenti nell'ambiente dello stomaco all'interno della cellula (la componente solubile di un ABC transporter, HP0298). La strategia utilizzata prevede un'analisi bioinformatica preliminare, l'ottenimento del gene per amplificazione, mediante PCR, dal genoma dell'organismo, la costruzione di un vettore per il clonaggio, l'espressione eterologa in E. coli e la successiva purificazione. La proteina così ottenuta viene caratterizzata mediante diverse tecniche, quali spettroscopia UV, dicroismo circolare, gel filtrazione analitica, spettrometria di massa. Il capitolo 1 contiene un'introduzione generale sul batterio, il capitolo 2 e il capitolo 3 descrivono gli studi relativi alle due proteine e sono entrambi suddivisi in un abstract iniziale, un'introduzione, la presentazione dei risultati, la discussione di questi ultimi, i materiali e i metodi utilizzati. La catalasi-like (HP0485) è una proteina periplasmatica con struttura monomerica, appartenente ad una famiglia di enzimi a funzione per la maggior parte sconosciuta, ma evolutivamente correlati alla ben nota catalasi, attore fondamentale nella difesa di H. pylori, grazie alla sua azione specifica di rimozione dell'acqua ossigenata. HP0485, pur conservando il fold catalasico e il legame al cofattore eme, non può compiere la reazione di dismutazione dell'acqua ossigenata; possiede invece un'attività perossidasica ad ampio spettro, essendo in grado di accoppiare la riduzione del perossido di idrogeno all'ossidazione di diversi substrati. Come la catalasi, lavora ad alte concentrazioni di aqua ossigenata e non arriva a saturazione a concentrazioni molto elevate di questo substrato (200 mM); la velocità di reazione catalizzata rimane lineare anche a questi valori, aspetto che la differenzia dalle perossidasi che vengono in genere inattivate da concentrazioni di perossido di idrogeno superiori a 10-50 mM. Queste caratteristiche di versatilità e robustezza suggeriscono che la catalasi-like abbia un ruolo di scavenger dell'acqua ossigenata e probabilmente anche un'altra funzione connessa al suo secondo substrato, ossia l'ossidazione di composti nello spazio periplasmatico cellulare. Oltre alla caratterizzazione dell'attività è descritta anche la presenza di un ponte disolfuro, conservato nelle catalasi-like periplasmatiche, con un ruolo nell'assemblaggio dell'eme per ottenere un enzima attivo e funzionale. La proteina periplasmatica HP0298, componente di un sistema di trasporto ABC, è classificata come trasportatore di dipeptidi e appartiene a una famiglia di proteine in grado di legare diversi substrati, tra cui di- e oligopeptidi, nichel, eme, glutatione. Benchè tutte associate a trasportatori di membrana batterici, queste proteine presentano un dominio di legame al substrato che risulta essere conservato nei domini extracellulari di recettori specifici di mammifero e uomo. Un esempio sono i recettori ionotropici e metabotropici del sistema nervoso. Per caratterizzare questa proteina è stato messo a punto un protocollo di ligand-fishing accoppiato alla spettrometria di massa. La proteina purificata, avente un tag di istidine, è stata incubata con un estratto cellulare di H. pylori per poter interagire con il suo substrato specifico all'interno dell'ambiente naturale in cui avviene il legame. Il complesso proteina-ligando è stato poi purificato per cromatografia di affinità e analizzato mediante HPLC-MS. L'identificazione dei picchi differenziali tra campioni con la proteina e 5 campioni di controllo ha portato alla caratterizzazione di pentapeptidi particolarmente ricchi in aminoacidi idrofobici e con almeno un residuo carico negativamente. Considerando che H. pylori necessita di alcuni aminoacidi essenziali, per la maggior parte idrofobici, e che lo stomaco umano è particolarmente ricco di peptidi prodotti dalla digestione delle proteine introdotte con il cibo, il ruolo fisiologico di HP0298 potrebbe essere l'internalizzazione di peptidi, con caratteristiche specifiche di lunghezza e composizione, che sono naturalmente presenti nella nicchia gastrica.
Resumo:
L’utilizzo di nanomateriali, ovvero una nuova classe di sostanze composte da particelle ultrafini con dimensioni comprese fra 1 e 100 nm (American Society for Testing Materials - ASTM), è in costante aumento a livello globale. La particolarità di tali sostanze è rappresentata da un alto rapporto tra la superficie e il volume delle particelle, che determina caratteristiche chimico-fisiche completamente differenti rispetto alle omologhe macrosostanze di riferimento. Tali caratteristiche sono tali da imporre una loro classificazione come nuovi agenti chimici (Royal Society & Royal Academy of Engineering report 2004). Gli impieghi attuali dei nanomateriali risultano in continua evoluzione, spaziando in diversi ambiti, dall’industria farmaceutica e cosmetica, all’industria tessile, elettronica, aerospaziale ed informatica. Diversi sono anche gli impieghi in campo biomedico; tra questi la diagnostica e la farmacoterapia. È quindi prevedibile che in futuro una quota sempre maggiore di lavoratori e consumatori risulteranno esposti a tali sostanze. Allo stato attuale non vi è una completa conoscenza degli effetti tossicologici ed ambientali di queste sostanze, pertanto, al fine di un loro utilizzo in totale sicurezza, risulta necessario capirne meglio l’impatto sulla salute, le vie di penetrazione nel corpo umano e il rischio per i lavoratori conseguente al loro utilizzo o lavorazione. La cute rappresenta la prima barriera nei confronti delle sostanze tossiche che possono entrare in contatto con l’organismo umano. Successivamente agli anni ‘60, quando si riteneva che la cute rappresentasse una barriera totalmente impermeabile, è stato dimostrato come essa presenti differenti gradi di permeabilità nei confronti di alcuni xenobiotici, dipendente dalle caratteristiche delle sostanze in esame, dal sito anatomico di penetrazione, dal grado di integrità della barriera stessa e dall’eventuale presenza di patologie della cute. La mucosa del cavo orale funge da primo filtro nei confronti delle sostanze che entrano in contatto con il tratto digestivo e può venir coinvolta in contaminazioni di superficie determinate da esposizioni occupazionali e/o ambientali. È noto che, rispetto alla cute, presenti una permeabilità all’acqua quattro volte maggiore, e, per tale motivo, è stata studiata come via di somministrazione di farmaci, ma, ad oggi, pochi sono gli studi che ne hanno valutato le caratteristiche di permeazione nei confronti delle nanoparticelle (NPs). Una terza importante barriera biologica è quella che ricopre il sistema nervoso centrale, essa è rappresentata da tre foglietti di tessuto connettivo, che assieme costituiscono le meningi. Questi tre foglietti rivestono completamente l’encefalo permettendone un isolamento, tradizionalmente ritenuto completo, nei confronti degli xenobiotici. L’unica via di assorbimento diretto, in questo contesto, è rappresentata dalla via intranasale. Essa permette un passaggio diretto di sostanze dall’epitelio olfattivo all’encefalo, eludendo la selettiva barriera emato-encefalica. Negli ultimi anni la letteratura scientifica si è arricchita di studi che hanno indagato le caratteristiche di assorbimento di farmaci attraverso questa via, ma pochissimi sono gli studi che hanno indagato la possibile penetrazione di nanoparticelle attraverso questa via, e nessuno, in particolar modo, ha indagato le caratteristiche di permeazione delle meningi. L’attività di ricerca svolta nell’ambito del presente dottorato ha avuto per finalità l’indagine delle caratteristiche di permeabilità e di assorbimento della cute, della mucosa del cavo orale e delle meningi nei confronti di alcune nanoparticelle, scelte fra quelle più rappresentative in relazione alla diffusione d’utilizzo a livello globale. I risultati degli esperimenti condotti hanno dimostrato, in vitro, che l’esposizione cutanea a Pt, Rh, Co3O4 e Ni NPs determinano permeazione in tracce dei medesimi metalli attraverso la cute, mentre per le TiO2 NPs tale permeazione non è stata dimostrata. È stato riscontrato, inoltre, che la mucosa del cavo orale e le meningi sono permeabili nei confronti dell’Ag in forma nanoparticellare.