2 resultados para Essential-state models
em Universita di Parma
Resumo:
This thesis is devoted to the investigation of inter and intramolecular charge transfer (CT) in molecular functional materials and specifically organic dyes and CT crystals. An integrated approach encompassing quantum-chemical calculations, semiempirical tools, theoretical models and spectroscopic measurements is applied to understand structure-property relationships governing the low-energy physics of these materials. Four main topics were addressed: 1) Spectral properties of organic dyes. Charge-transfer dyes are constituted by electron donor (D) and electron acceptor (A) units linked through bridge(s) to form molecules with different symmetry and dimensionality. Their low-energy physics is governed by the charge resonance between D and A groups and is effectively described by a family of parametric Hamiltonians known as essential-state models. These models account for few electronic states, corresponding to the main resonance structures of the relevant dye, leading to a simple picture that is completed introducing the coupling of the electronic system to molecular vibrations, treated in a non-adiabatic way, and an effective classical coordinate, describing polar solvation. In this work a specific essential-state model was proposed and parametrized for the dye Brilliant Green. The central issue in this work has been the definition of the diabatic states, a not trivial task for a multi-branched chromophore. In a second effort, we have used essential-state models for the description of the early-stage dynamics of excited states after ultrafast excitation. Crucial to this work is the fully non-adiabatic treatment of the coupled electronic and vibrational motion, allowing for a reliable description of the dynamics of systems showing a multistable, broken-symmetry excited state. 2) Mixed-stack CT salts. Mixed-stack (MS) CT crystals are an interesting class of multifunctional molecular materials, where D and A molecules arrange themselves to form stacks, leading to delocalized electrons in one dimension. The interplay between the intermolecular CT, electrostatic interactions, lattice phonons and molecular vibrations leads to intriguing physical properties that include (photoinduced) phase transitions, multistability, antiferromagnetism, ferroelectricity and potential multiferroicity. The standard microscopic model to describe this family of materials is the Modified Hubbard model accounting for electron-phonon coupling (Peierls coupling), electron-molecular vibrations coupling (Holstein coupling) and electrostatic interactions. We adopt and validate a method, based on DFT calculations on dimeric DA structures, to extract relevant model parameters. The approach offers a powerful tool to shed light on the complex physics of MS-CT salts. 3) Charge transfer in organic radical dipolar dyes. In collaboration with the group of Prof. Jaume Veciana (ICMAB- Barcellona), we have studied spectral properties of a special class of CT dyes with D-bridge-A structure where the acceptor group is a stable radical (of the perchlorotriphenylmethyl, PTM, family), leading to an open-shell CT dyes. These materials are of interest since they associate the electronic and optical properties of CT dyes with magnetic properties from the unpaired electron. The first effort was devoted to the parametrization of the relevant essential-state model. Two strategies were adopted, one based on the calculation of the low-energy spectral properties, the other based on the variation of ground state properties with an applied electric field. 4) The spectral properties of organic nanoparticles based on radical species are investigated in collaboration with Dr. I. Ratera (ICMAB- Barcellona). Intriguing spectroscopic behavior was observed pointing to the presence of excimer states. In an attempt to rationalize these findings, extensive calculations (TD-DFT and ZINDO) were performed. The results for the isolated dyes are validated against experimental spectra in solution. To address intermolecular interactions we studied dimeric structures in the gas phase, but the preliminary results obtained do not support excimer formation.
Resumo:
Oggi, i dispositivi portatili sono diventati la forza trainante del mercato consumer e nuove sfide stanno emergendo per aumentarne le prestazioni, pur mantenendo un ragionevole tempo di vita della batteria. Il dominio digitale è la miglior soluzione per realizzare funzioni di elaborazione del segnale, grazie alla scalabilità della tecnologia CMOS, che spinge verso l'integrazione a livello sub-micrometrico. Infatti, la riduzione della tensione di alimentazione introduce limitazioni severe per raggiungere un range dinamico accettabile nel dominio analogico. Minori costi, minore consumo di potenza, maggiore resa e una maggiore riconfigurabilità sono i principali vantaggi dell'elaborazione dei segnali nel dominio digitale. Da più di un decennio, diverse funzioni puramente analogiche sono state spostate nel dominio digitale. Ciò significa che i convertitori analogico-digitali (ADC) stanno diventando i componenti chiave in molti sistemi elettronici. Essi sono, infatti, il ponte tra il mondo digitale e analogico e, di conseguenza, la loro efficienza e la precisione spesso determinano le prestazioni globali del sistema. I convertitori Sigma-Delta sono il blocco chiave come interfaccia in circuiti a segnale-misto ad elevata risoluzione e basso consumo di potenza. I tools di modellazione e simulazione sono strumenti efficaci ed essenziali nel flusso di progettazione. Sebbene le simulazioni a livello transistor danno risultati più precisi ed accurati, questo metodo è estremamente lungo a causa della natura a sovracampionamento di questo tipo di convertitore. Per questo motivo i modelli comportamentali di alto livello del modulatore sono essenziali per il progettista per realizzare simulazioni veloci che consentono di identificare le specifiche necessarie al convertitore per ottenere le prestazioni richieste. Obiettivo di questa tesi è la modellazione del comportamento del modulatore Sigma-Delta, tenendo conto di diverse non idealità come le dinamiche dell'integratore e il suo rumore termico. Risultati di simulazioni a livello transistor e dati sperimentali dimostrano che il modello proposto è preciso ed accurato rispetto alle simulazioni comportamentali.