2 resultados para Early Frontal Selection Positivity

em Universita di Parma


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Response inhibition is the ability to suppress inadequate but automatically activated, prepotent or ongoing response tendencies. In the framework of motor inhibition, two distinct operating strategies have been described: “proactive” and “reactive” control modes. In the proactive modality, inhibition is recruited in advance by predictive signals, and actively maintained before its enactment. Conversely, in the reactive control mode, inhibition is phasically enacted after the detection of the inhibitory signal. To date, ample evidence points to a core cerebral network for reactive inhibition comprising the right inferior frontal gyrus (rIFG), the presupplementary motor area (pre-SMA) and the basal ganglia (BG). Moreover, fMRI studies showed that cerebral activations during proactive and reactive inhibition largely overlap. These findings suggest that at least part of the neural network for reactive inhibition is recruited in advance, priming cortical regions in preparation for the upcoming inhibition. So far, proactive and reactive inhibitory mechanisms have been investigated during tasks in which the requested response to be stopped or withheld was an “overt” action execution (AE) (i.e., a movement effectively performed). Nevertheless, inhibitory mechanisms are also relevant for motor control during “covert actions” (i.e., potential motor acts not overtly performed), such as motor imagery (MI). MI is the conscious, voluntary mental rehearsal of action representations without any overt movement. Previous studies revealed a substantial overlap of activated motor-related brain networks in premotor, parietal and subcortical regions during overtly executed and imagined movements. Notwithstanding this evidence for a shared set of cerebral regions involved in encoding actions, whether or not those actions are effectively executed, the neural bases of motor inhibition during MI, preventing covert action from being overtly performed, in spite of the activation of the motor system, remain to be fully clarified. Taking into account this background, we performed a high density EEG study evaluating cerebral mechanisms and their related sources elicited during two types of cued Go/NoGo task, requiring the execution or withholding of an overt (Go) or a covert (MI) action, respectively. The EEG analyses were performed in two steps, with different aims: 1) Analysis of the “response phase” of the cued overt and covert Go/NoGo tasks, for the evaluation of reactive inhibitory control of overt and covert actions. 2) Analysis of the “preparatory phase” of the cued overt and covert Go/NoGo EEG datasets, focusing on cerebral activities time-locked to the preparatory signals, for the evaluation of proactive inhibitory mechanisms and their related neural sources. For these purposes, a spatiotemporal analysis of the scalp electric fields was applied on the EEG data recorded during the overt and covert Go/NoGo tasks. The spatiotemporal approach provide an objective definition of time windows for source analysis, relying on the statistical proof that the electric fields are different and thus generated by different neural sources. The analysis of the “response phase” revealed that key nodes of the inhibitory circuit, underpinning inhibition of the overt movement during the NoGo response, were also activated during the MI enactment. In both cases, inhibition relied on the activation of pre-SMA and rIFG, but with different temporal patterns of activation in accord with the intended “covert” or “overt” modality of motor performance. During the NoGo condition, the pre-SMA and rIFG were sequentially activated, pointing to an early decisional role of pre-SMA and to a later role of rIFG in the enactment of inhibitory control of the overt action. Conversely, a concomitant activation of pre-SMA and rIFG emerged during the imagined motor response. This latter finding suggested that an inhibitory mechanism (likely underpinned by the rIFG), could be prewired into a prepared “covert modality” of motor response, as an intrinsic component of the MI enactment. This mechanism would allow the rehearsal of the imagined motor representations, without any overt movement. The analyses of the “preparatory phase”, confirmed in both overt and covert Go/NoGo tasks the priming of cerebral regions pertaining to putative inhibitory network, reactively triggered in the following response phase. Nonetheless, differences in the preparatory strategies between the two tasks emerged, depending on the intended “overt” or “covert” modality of the possible incoming motor response. During the preparation of the overt Go/NoGo task, the cue primed the possible overt response programs in motor and premotor cortex. At the same time, through preactivation of a pre-SMA-related decisional mechanism, it triggered a parallel preparation for the successful response selection and/or inhibition during the subsequent response phase. Conversely, the preparatory strategy for the covert Go/NoGo task was centred on the goal-oriented priming of an inhibitory mechanism related to the rIFG that, being tuned to the instructed covert modality of the motor performance and instantiated during the subsequent MI enactment, allowed the imagined response to remain a potential motor act. Taken together, the results of the present study demonstrate a substantial overlap of cerebral networks activated during proactive recruitment and subsequent reactive enactment of motor inhibition in both overt and covert actions. At the same time, our data show that preparatory cues predisposed ab initio a different organization of the cerebral areas (in particular of the pre-SMA and rIFG) involved with sensorimotor transformations and motor inhibitory control for executed and imagined actions. During the preparatory phases of our cued overt and covert Go/NoGo tasks, the different adopted strategies were tuned to the “how” of the motor performance, reflecting the intended overt and covert modality of the possible incoming action.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hop (Humulus lupulus L.) is a dioecius perennial plant. The cultivation is specific for female plants, used mainly for brewing and pharmacology. Female inflorescence, known as cone or strobili, contains bitter acids, essential oil and polyphenols. Commercial hop cultivation provides better results in regions between 45 and 55 degrees north or south in latitude, an area that also includes the northern part of Italy, where hop is endemic. Despite several studies have been conducted on the characterization of wild hops biodiversity in the U.S.A. and Europe, a lack in literature concerning the description of Italian wild hops genetic variability is still present. The increasing request of hop varieties improved in important traits, like diseases, resistance and valuable aroma profile, is bringing the hop industry. Moreover, Italian agricultural sector needs new impulse to be competitive in the market. In this view, Italian wild hop biodiversity is a resource, useful for the obtaining of Italian hop varieties, characterized by peculiar aromatic traits and more adaptable to Mediterranean climate, making their cultivation more sustainable. Based on this consideration, the present Ph.D. thesis deals with the evaluation of the Italian hop biodiversity, through the characterization of the wild samples under different point of view. The project started with the recovery of wild hop samples in different areas of north of Italy to consitue a collection field, where 11 commercial cultivars of US and European origin were grown, to have a complete vision of the hop panorama. Ph.D. project followed different research lines, the results of each one contributed to completly characterize the northern Italian hop wild biodiversity: • the morphological description showed a high phenological variability (Study 1); • the genetic characterization confirmed the rich biodiversity of the Italian population and showed a significant genetic distance between Italian genotypes and the commercial cultivars, taken in consideration (Study 2); • the need of an early sex discrimination method leads to an improvement of a genetic marker, developing a more efficient marker (Study 3); • a complete morphologic, genetic and chemical analysis of plants gave results to select the most promising genotypes (Study 4); • the comparison between the performance of wild hops and commercial cultivars in the same collection field indicated that some wild genotypes had a higher environment adaptability (Study 5); • the evaluation of the terroir, obtained comparing commercial cultivars in the collection field and the same genotypes purchased in the market, showed the influence of the northern Italian environment on the aromatic profile (Study 5); • a new analytical method for the revelation of bioactive metabolites and a simple extraction procedure were developed (Study 6). In conclusion, the Ph.D. thesis, contains the first characterization of Italian wild hop, made under field condition. The present study: i) permits to obtain a complete and significative description of the genotypes; ii) allows the identification of the most promising wild Italian genotypes; iii) allows the identification of commercial cultivars more adaptable the northern Italian climate.