1 resultado para Data-driven knowledge acquisition
em Universita di Parma
Filtro por publicador
- JISC Information Environment Repository (3)
- Aberystwyth University Repository - Reino Unido (4)
- Academic Archive On-line (Karlstad University; Sweden) (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (2)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (10)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (4)
- Aquatic Commons (5)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (4)
- Archive of European Integration (1)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (2)
- Aston University Research Archive (42)
- Biblioteca de Teses e Dissertações da USP (1)
- Biblioteca Digital | Sistema Integrado de Documentación | UNCuyo - UNCUYO. UNIVERSIDAD NACIONAL DE CUYO. (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (8)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (6)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (2)
- Bioline International (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (54)
- Brock University, Canada (7)
- Bucknell University Digital Commons - Pensilvania - USA (3)
- Bulgarian Digital Mathematics Library at IMI-BAS (17)
- CaltechTHESIS (3)
- Cambridge University Engineering Department Publications Database (21)
- CentAUR: Central Archive University of Reading - UK (60)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (10)
- Cochin University of Science & Technology (CUSAT), India (2)
- Coffee Science - Universidade Federal de Lavras (2)
- Collection Of Biostatistics Research Archive (1)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (1)
- CORA - Cork Open Research Archive - University College Cork - Ireland (3)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (3)
- CUNY Academic Works (9)
- Dalarna University College Electronic Archive (4)
- Department of Computer Science E-Repository - King's College London, Strand, London (1)
- Digital Commons - Michigan Tech (4)
- Digital Commons @ DU | University of Denver Research (1)
- Digital Commons @ Winthrop University (2)
- Digital Commons at Florida International University (20)
- Digital Peer Publishing (2)
- Digital Repository at Iowa State University (2)
- DigitalCommons@The Texas Medical Center (7)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (1)
- DRUM (Digital Repository at the University of Maryland) (4)
- Duke University (6)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (3)
- FUNDAJ - Fundação Joaquim Nabuco (2)
- Glasgow Theses Service (2)
- Greenwich Academic Literature Archive - UK (2)
- Helda - Digital Repository of University of Helsinki (7)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (4)
- Indian Institute of Science - Bangalore - Índia (22)
- Instituto Politécnico de Viseu (1)
- Instituto Politécnico do Porto, Portugal (10)
- Línguas & Letras - Unoeste (1)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (3)
- Massachusetts Institute of Technology (5)
- Ministerio de Cultura, Spain (2)
- National Center for Biotechnology Information - NCBI (2)
- Nottingham eTheses (3)
- Open University Netherlands (1)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (2)
- Portal de Revistas Científicas Complutenses - Espanha (3)
- Publishing Network for Geoscientific & Environmental Data (5)
- QSpace: Queen's University - Canada (5)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (40)
- Queensland University of Technology - ePrints Archive (124)
- RCAAP - Repositório Científico de Acesso Aberto de Portugal (1)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (1)
- Repositório Científico da Universidade de Évora - Portugal (4)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (1)
- Repositorio de la Universidad de Cuenca (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (9)
- Repositorio Institucional da UFLA (RIUFLA) (1)
- Repositório Institucional da Universidade de Aveiro - Portugal (3)
- Repositório Institucional da Universidade Federal de São Paulo - UNIFESP (1)
- Repositório Institucional da Universidade Federal do Rio Grande do Norte (1)
- Repositorio Institucional de la Universidad de Málaga (2)
- Repositorio Institucional de la Universidad Pública de Navarra - Espanha (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (30)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (4)
- SAPIENTIA - Universidade do Algarve - Portugal (6)
- Savoirs UdeS : plateforme de diffusion de la production intellectuelle de l’Université de Sherbrooke - Canada (1)
- Scielo España (1)
- Universidad de Alicante (7)
- Universidad del Rosario, Colombia (6)
- Universidad Politécnica de Madrid (26)
- Universidade de Lisboa - Repositório Aberto (6)
- Universidade Federal do Pará (7)
- Universidade Federal do Rio Grande do Norte (UFRN) (7)
- Universita di Parma (1)
- Universitat de Girona, Spain (5)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (12)
- Université de Lausanne, Switzerland (3)
- Université de Montréal (2)
- Université de Montréal, Canada (15)
- University of Michigan (7)
- University of Queensland eSpace - Australia (5)
- University of Southampton, United Kingdom (5)
- University of Washington (6)
- WestminsterResearch - UK (5)
Resumo:
In this thesis work we develop a new generative model of social networks belonging to the family of Time Varying Networks. The importance of correctly modelling the mechanisms shaping the growth of a network and the dynamics of the edges activation and inactivation are of central importance in network science. Indeed, by means of generative models that mimic the real-world dynamics of contacts in social networks it is possible to forecast the outcome of an epidemic process, optimize the immunization campaign or optimally spread an information among individuals. This task can now be tackled taking advantage of the recent availability of large-scale, high-quality and time-resolved datasets. This wealth of digital data has allowed to deepen our understanding of the structure and properties of many real-world networks. Moreover, the empirical evidence of a temporal dimension in networks prompted the switch of paradigm from a static representation of graphs to a time varying one. In this work we exploit the Activity-Driven paradigm (a modeling tool belonging to the family of Time-Varying-Networks) to develop a general dynamical model that encodes fundamental mechanism shaping the social networks' topology and its temporal structure: social capital allocation and burstiness. The former accounts for the fact that individuals does not randomly invest their time and social interactions but they rather allocate it toward already known nodes of the network. The latter accounts for the heavy-tailed distributions of the inter-event time in social networks. We then empirically measure the properties of these two mechanisms from seven real-world datasets and develop a data-driven model, analytically solving it. We then check the results against numerical simulations and test our predictions with real-world datasets, finding a good agreement between the two. Moreover, we find and characterize a non-trivial interplay between burstiness and social capital allocation in the parameters phase space. Finally, we present a novel approach to the development of a complete generative model of Time-Varying-Networks. This model is inspired by the Kaufman's adjacent possible theory and is based on a generalized version of the Polya's urn. Remarkably, most of the complex and heterogeneous feature of real-world social networks are naturally reproduced by this dynamical model, together with many high-order topological properties (clustering coefficient, community structure etc.).