1 resultado para Data Management
em Universita di Parma
Resumo:
The Internet of Things (IoT) consists of a worldwide “network of networks,” composed by billions of interconnected heterogeneous devices denoted as things or “Smart Objects” (SOs). Significant research efforts have been dedicated to port the experience gained in the design of the Internet to the IoT, with the goal of maximizing interoperability, using the Internet Protocol (IP) and designing specific protocols like the Constrained Application Protocol (CoAP), which have been widely accepted as drivers for the effective evolution of the IoT. This first wave of standardization can be considered successfully concluded and we can assume that communication with and between SOs is no longer an issue. At this time, to favor the widespread adoption of the IoT, it is crucial to provide mechanisms that facilitate IoT data management and the development of services enabling a real interaction with things. Several reference IoT scenarios have real-time or predictable latency requirements, dealing with billions of device collecting and sending an enormous quantity of data. These features create a new need for architectures specifically designed to handle this scenario, hear denoted as “Big Stream”. In this thesis a new Big Stream Listener-based Graph architecture is proposed. Another important step, is to build more applications around the Web model, bringing about the Web of Things (WoT). As several IoT testbeds have been focused on evaluating lower-layer communication aspects, this thesis proposes a new WoT Testbed aiming at allowing developers to work with a high level of abstraction, without worrying about low-level details. Finally, an innovative SOs-driven User Interface (UI) generation paradigm for mobile applications in heterogeneous IoT networks is proposed, to simplify interactions between users and things.