2 resultados para Biomedical imaging and visualization

em Universita di Parma


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nanomedicine is a new branch of medicine, based on the potentiality and intrinsic properties of nanomaterials. Indeed, the nanomaterials ( i.e. the materials with nano and under micron size) can be suitable to different applications in biomedicine. The nanostructures can be used by taking advantage of their properties (for example superparamagnetic nanoparticles) or functionalized to deliver the drug in a specific target, thanks the ability to cross biological barriers. The size and the shape of 1D-nanostructures (nanotubes and nanowires) have an important role on the cell fate: their morphology plays a key role on the interaction between nanostructure and the biological system. For this reason the 1D nanostructure are interesting for their ability to mime the biological system. An implantable material or device must therefore integrate with the surrounding extracellular matrix (ECM), a complex network of proteins with structural and signaling properties. Innovative techniques allow the generation of complex surface patterns that can resemble the structure of the ECM, such as 1D nanostructures. NWs based on cubic silicon carbide (3C-SiC), either bare (3C-SiC NWs) or surrounded by an amorphous shell (3C-SiC/SiO2 core/shell NWs), and silicon oxycarbide nanowires (SiOxCy NWs) can meet the chemical, mechanical and electrical requirements for tissue engineering and have a strong potential to pave the way for the development of a novel generation of implantable nano-devices. Silicon oxycarbide shows promising physical and chemical properties as elastic modulus, bending strength and hardness, chemical durability superior to conventional silicate glasses in aggressive environments and high temperature stability up to 1300 °C. Moreover, it can easily be engineered through functionalization and decoration with macro-molecules and nanoparticles. Silicon carbide has been extensively studied for applications in harsh conditions, as chemical environment, high electric field and high and low temperature, owing to its high hardness, high thermal conductivity, chemical inertness and high electron mobility. Also, its cubic polytype (3C) is highly biocompatible and hemocompatible, and some prototypes of biomedical applications and biomedical devices have been already realized starting from 3C-SiC thin films. Cubic SiC-based NWs can be used as a biomimetic biomaterial, providing a robust and novel biocompatible biological interface . We cultured in vitro A549 human lung adenocarcinoma epithelial cells and L929 murine fibroblast cells over core/shell SiC/SiO2, SiOxCy and bare 3C-SiC nanowire platforms, and analysed the cytotoxicity, by indirect and direct contact tests, the cell adhesion, and the cell proliferation. These studies showed that all the nanowires are biocompatible according to ISO 10993 standards. We evaluated the blood compatibility through the interaction of the nanowires with platelet rich plasma. The adhesion and activation of platelets on the nanowire bundles, assessed via SEM imaging and soluble P-selectin quantification, indicated that a higher platelet activation is induced by the core/shell structures compared to the bare ones. Further, platelet activation is higher with 3C-SiC/SiO2 NWs and SiOxCyNWs, which therefore appear suitable in view of possible tissue regeneration. On the contrary, bare 3C-SiC NWs show a lower platelet activation and are therefore promising in view of implantable bioelectronics devices, as cardiovascular implantable devices. The NWs properties are suitable to allow the design of a novel subretinal Micro Device (MD). This devices is based on Si NWs and PEDOT:PSS, though the well know principle of the hybrid ordered bulk heterojunction (OBHJ). The aim is to develop a device based on a well-established photovoltaic technology and to adapt this know-how to the prosthetic field. The hybrid OBHJ allows to form a radial p–n junction on a nanowire/organic structure. In addition, the nanowires increase the light absorption by means of light scattering effects: a nanowires based p-n junction increases the light absorption up to the 80%, as previously demonstrated, overcoming the Shockley-Queisser limit of 30 % of a bulk p-n junction. Another interesting employment of these NWs is to design of a SiC based epicardial-interacting patch based on teflon that include SiC nanowires. . Such contact patch can bridge the electric conduction across the cardiac infarct as nanowires can ‘sense’ the direction of the wavefront propagation on the survival cardiac tissue and transmit it to the downstream surivived regions without discontinuity. The SiC NWs are tested in terms of toxicology, biocompatibility and conductance among cardiomyocytes and myofibroblasts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The efficiency of a Laue lens for X and Gamma ray focusing in the energy range 60 ÷ 600 keV is closely linked to the diffraction efficiency of the single crystals composing the lens. A powerful focusing system is crucial for applications like medical imaging and X ray astronomy where wide beams must be focused. Mosaic crystals with a high density, such as Cu or Au, and bent crystals with curved diffracting planes (CDP) are considered for the realization of a focusing system for X rays, owing to their high diffraction efficiency. In this work, a comparison of the efficiency of CDP crystals and mosaic crystals was performed on the basis of the theory of X-ray diffraction. Si, GaAs and Ge CDP crystals with optimized thicknesses and moderate radii of curvature of several tens of metres demonstrate comparable or superior performance with respect to the higher atomic number mosaic crystals generally used. A simplified approach for calculating the integrated reflectivity of the crystals is applied. A bending technique used during this work to realize CDP crystals consists in a controlled surface damaging induced by a mechanical lapping process. A compressive strained layer of few micrometres in thickness is generated and causes the convex curvature of the damaged side of the crystal. Another new bending technique is developed and the main results are shown. The process consists on a film deposition of a selected bi-component epoxy resin on one side of crystal, made uniform in thickness by mean of a spin-coater. Choosing the speed of spin-coating, so changing the thickness of the film, a control of radius of curvature can be obtained. Moreover the possibility to combine the two bending technique to obtain CDP crystal with a stronger curvature in rather thick crystals was demonstrated. Detailed characterization of Si, and GaAs CDP crystals at low and high x-ray energies are performed on flat and bent crystals obtained with the damaging and the resin deposition technique. As expected an increase of diffraction efficiency in asymmetrical diffraction geometry in CDP crystals with respect to the flat ones is observed. On the other hand an unexpected increase of the integrated intensity in symmetrical geometry, not predicted by the theory, is observed in all the measurements performed with different set up. The experimental trend of the integrated reflectivity as a function of the radius of curvature is in a good agreement with that predicted by the theory of bent perfect crystals, so it is possible to conclude that the surface damage has a limited effect on the crystal reflectivity. A study of the integrated reflectivity in the energy range of interest (100÷350 keV) in CDP crystals realized with damaging and resin deposition technique at symmetrical and asymmetrical geometries was performed at ILL Institute. Also at these energies the diffraction efficiency of bent crystals was much larger (a 12 time increase is observed for bent crystals in asymmetrical 111 geometry) than that measured in flat crystals. The diffraction efficiency of CDP crystals realized with both techniques tends to coincide with that of flat crystals at very high energies (> 200 keV). This suggesting that also real flat perfect crystals can be considered as strongly bent or mosaic crystals at very high X ray energies.