2 resultados para Analysis Tools

em Universita di Parma


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Among the Solar System’s bodies, Moon, Mercury and Mars are at present, or have been in the recent years, object of space missions aimed, among other topics, also at improving our knowledge about surface composition. Between the techniques to detect planet’s mineralogical composition, both from remote and close range platforms, visible and near-infrared reflectance (VNIR) spectroscopy is a powerful tool, because crystal field absorption bands are related to particular transitional metals in well-defined crystal structures, e.g., Fe2+ in M1 and M2 sites of olivine or pyroxene (Burns, 1993). Thanks to the improvements in the spectrometers onboard the recent missions, a more detailed interpretation of the planetary surfaces can now be delineated. However, quantitative interpretation of planetary surface mineralogy could not always be a simple task. In fact, several factors such as the mineral chemistry, the presence of different minerals that absorb in a narrow spectral range, the regolith with a variable particle size range, the space weathering, the atmosphere composition etc., act in unpredictable ways on the reflectance spectra on a planetary surface (Serventi et al., 2014). One method for the interpretation of reflectance spectra of unknown materials involves the study of a number of spectra acquired in the laboratory under different conditions, such as different mineral abundances or different particle sizes, in order to derive empirical trends. This is the methodology that has been followed in this PhD thesis: the single factors previously listed have been analyzed, creating, in the laboratory, a set of terrestrial analogues with well-defined composition and size. The aim of this work is to provide new tools and criteria to improve the knowledge of the composition of planetary surfaces. In particular, mixtures composed with different content and chemistry of plagioclase and mafic minerals have been spectroscopically analyzed at different particle sizes and with different mineral relative percentages. The reflectance spectra of each mixture have been analyzed both qualitatively (using the software ORIGIN®) and quantitatively applying the Modified Gaussian Model (MGM, Sunshine et al., 1990) algorithm. In particular, the spectral parameter variations of each absorption band have been evaluated versus the volumetric FeO% content in the PL phase and versus the PL modal abundance. This delineated calibration curves of composition vs. spectral parameters and allow implementation of spectral libraries. Furthermore, the trends derived from terrestrial analogues here analyzed and from analogues in the literature have been applied for the interpretation of hyperspectral images of both plagioclase-rich (Moon) and plagioclase-poor (Mars) bodies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have carried out a discovery proteomics investigation aimed at identifying disease biomarkers present in saliva, and, more specifically, early biomarkers of inflammation. The proteomic characterization of saliva is possible due to the straightforward and non-invasive sample collection that allows repetitive analyses for pharmacokinetic studies. These advantages are particularly relevant in the case of newborn patients. The study was carried out with samples collected during the first 48 hours of life of the newborns according to an approved Ethic Committee procedure. In particular, the salivary samples were collected from healthy and infected (n=1) newborns. Proteins were extracted through cycles of sonication, precipitated in ice cold acetone, resuspended and resolved by 2D-electrophoresis. MALDI TOF/TOF mass spectrometry analysis was performed for each spot obtaining the proteins’ identifications. Then we compared healthy newborn salivary proteome and an infected newborn salivary proteome in order to investigate proteins differently expressed in inflammatory condition. In particular the protein alpha-1-antitrypsin (A1AT), correlated with inflammation, was detected differently expressed in the infected newborn saliva. Therefore, in the second part of the project we aimed to develop a robust LC-MS based method that identifies and quantifies this inflammatory protein within saliva that might represent the first relevant step to diagnose a condition of inflammation with a no-invasive assay. The same LC-MS method is also useful to investigate the presence of the F allelic variant of the A1AT in biological samples, which is correlated with the onset of pulmonary diseases. In the last part of the work we analysed newborn saliva samples in order to investigate how phospholipids and mediators of inflammation (eicosanoids) are subject to variations under inflammatory conditions and a trend was observed in lysophosphatidylcholines composition according to the inflammatory conditions.