2 resultados para Actions pédagogiques émotionnelles
em Universita di Parma
Proactive and reactive inhibition during overt and covert actions. An electrical neuroimaging study.
Resumo:
Response inhibition is the ability to suppress inadequate but automatically activated, prepotent or ongoing response tendencies. In the framework of motor inhibition, two distinct operating strategies have been described: “proactive” and “reactive” control modes. In the proactive modality, inhibition is recruited in advance by predictive signals, and actively maintained before its enactment. Conversely, in the reactive control mode, inhibition is phasically enacted after the detection of the inhibitory signal. To date, ample evidence points to a core cerebral network for reactive inhibition comprising the right inferior frontal gyrus (rIFG), the presupplementary motor area (pre-SMA) and the basal ganglia (BG). Moreover, fMRI studies showed that cerebral activations during proactive and reactive inhibition largely overlap. These findings suggest that at least part of the neural network for reactive inhibition is recruited in advance, priming cortical regions in preparation for the upcoming inhibition. So far, proactive and reactive inhibitory mechanisms have been investigated during tasks in which the requested response to be stopped or withheld was an “overt” action execution (AE) (i.e., a movement effectively performed). Nevertheless, inhibitory mechanisms are also relevant for motor control during “covert actions” (i.e., potential motor acts not overtly performed), such as motor imagery (MI). MI is the conscious, voluntary mental rehearsal of action representations without any overt movement. Previous studies revealed a substantial overlap of activated motor-related brain networks in premotor, parietal and subcortical regions during overtly executed and imagined movements. Notwithstanding this evidence for a shared set of cerebral regions involved in encoding actions, whether or not those actions are effectively executed, the neural bases of motor inhibition during MI, preventing covert action from being overtly performed, in spite of the activation of the motor system, remain to be fully clarified. Taking into account this background, we performed a high density EEG study evaluating cerebral mechanisms and their related sources elicited during two types of cued Go/NoGo task, requiring the execution or withholding of an overt (Go) or a covert (MI) action, respectively. The EEG analyses were performed in two steps, with different aims: 1) Analysis of the “response phase” of the cued overt and covert Go/NoGo tasks, for the evaluation of reactive inhibitory control of overt and covert actions. 2) Analysis of the “preparatory phase” of the cued overt and covert Go/NoGo EEG datasets, focusing on cerebral activities time-locked to the preparatory signals, for the evaluation of proactive inhibitory mechanisms and their related neural sources. For these purposes, a spatiotemporal analysis of the scalp electric fields was applied on the EEG data recorded during the overt and covert Go/NoGo tasks. The spatiotemporal approach provide an objective definition of time windows for source analysis, relying on the statistical proof that the electric fields are different and thus generated by different neural sources. The analysis of the “response phase” revealed that key nodes of the inhibitory circuit, underpinning inhibition of the overt movement during the NoGo response, were also activated during the MI enactment. In both cases, inhibition relied on the activation of pre-SMA and rIFG, but with different temporal patterns of activation in accord with the intended “covert” or “overt” modality of motor performance. During the NoGo condition, the pre-SMA and rIFG were sequentially activated, pointing to an early decisional role of pre-SMA and to a later role of rIFG in the enactment of inhibitory control of the overt action. Conversely, a concomitant activation of pre-SMA and rIFG emerged during the imagined motor response. This latter finding suggested that an inhibitory mechanism (likely underpinned by the rIFG), could be prewired into a prepared “covert modality” of motor response, as an intrinsic component of the MI enactment. This mechanism would allow the rehearsal of the imagined motor representations, without any overt movement. The analyses of the “preparatory phase”, confirmed in both overt and covert Go/NoGo tasks the priming of cerebral regions pertaining to putative inhibitory network, reactively triggered in the following response phase. Nonetheless, differences in the preparatory strategies between the two tasks emerged, depending on the intended “overt” or “covert” modality of the possible incoming motor response. During the preparation of the overt Go/NoGo task, the cue primed the possible overt response programs in motor and premotor cortex. At the same time, through preactivation of a pre-SMA-related decisional mechanism, it triggered a parallel preparation for the successful response selection and/or inhibition during the subsequent response phase. Conversely, the preparatory strategy for the covert Go/NoGo task was centred on the goal-oriented priming of an inhibitory mechanism related to the rIFG that, being tuned to the instructed covert modality of the motor performance and instantiated during the subsequent MI enactment, allowed the imagined response to remain a potential motor act. Taken together, the results of the present study demonstrate a substantial overlap of cerebral networks activated during proactive recruitment and subsequent reactive enactment of motor inhibition in both overt and covert actions. At the same time, our data show that preparatory cues predisposed ab initio a different organization of the cerebral areas (in particular of the pre-SMA and rIFG) involved with sensorimotor transformations and motor inhibitory control for executed and imagined actions. During the preparatory phases of our cued overt and covert Go/NoGo tasks, the different adopted strategies were tuned to the “how” of the motor performance, reflecting the intended overt and covert modality of the possible incoming action.
Resumo:
Action selection and organization are very complex processes that need to exploit contextual information and the retrieval of previously memorized information, as well as the integration of these different types of data. On the basis of anatomical connection with premotor and parietal areas involved in action goal coding, and on the data about the literature it seems appropriate to suppose that one of the most candidate involved in the selection of neuronal pools for the selection and organization of intentional actions is the prefrontal cortex. We recorded single ventrolateral prefrontal (VLPF) neurons activity while monkeys performed simple and complex manipulative actions aimed at distinct final goals, by employing a modified and more strictly controlled version of the grasp-to-eat(a food pellet)/grasp-to-place(an object) paradigm used in previous studies on parietal (Fogassi et al., 2005) and premotor neurons (Bonini et al., 2010). With this task we have been able both to evaluate the processing and integration of distinct (visual and auditory) contextual sequentially presented information in order to select the forthcoming action to perform and to examine the possible presence of goal-related activity in this portion of cortex. Moreover, we performed an observation task to clarify the possible contribution of VLPF neurons to the understanding of others’ goal-directed actions. Simple Visuo Motor Task (sVMT). We found four main types of neurons: unimodal sensory-driven, motor-related, unimodal sensory-and-motor, and multisensory neurons. We found a substantial number of VLPF neurons showing both a motor-related discharge and a visual presentation response (sensory-and-motor neurons), with remarkable visuo-motor congruence for the preferred target. Interestingly the discharge of multisensory neurons reflected a behavioural decision independently from the sensory modality of the stimulus allowing the monkey to make it: some encoded a decision to act/refraining from acting (the majority), while others specified one among the four behavioural alternatives. Complex Visuo Motor Task (cVMT). The cVMT was similar to the sVMT, but included a further grasping motor act (grasping a lid in order to remove it, before grasping the target) and was run in two modalities: randomized and in blocks. Substantially, motor-related and sensory-and-motor neurons tested in the cVMTrandomized were activated already during the first grasping motor act, but the selectivity for one of the two graspable targets emerged only during the execution of the second grasping. In contrast, when the cVMT was run in block, almost all these neurons not only discharged during the first grasping motor act, but also displayed the same target selectivity showed in correspondence of the hand contact with the target. Observation Task (OT). A great part of the neurons active during the OT showed a firing rate modulation in correspondence with the action performed by the experimenter. Among them, we found neurons significantly activated during the observation of the experimenter’s action (action observation-related neurons) and neurons responding not only to the action observation, but also to the presented cue stimuli (sensory-and-action observation-related neurons. Among the neurons of the first set, almost the half displayed a target selectivity, with a not clear difference between the two presented targets; Concerning to the second neuronal set, sensory-and-action related neurons, we found a low target selectivity and a not strictly congruence between the selectivity exhibited in the visual response and in the action observation.