2 resultados para 090801 Food Chemistry and Molecular Gastronomy (excl. Wine)

em Universita di Parma


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This Ph.D. thesis describes the synthesis, characterization and study of calix[6]arene derivatives as pivotal components for the construction of molecular machine prototypes. Initially, the ability of a calix[6]arene wheel to supramolecularly assist and increase the rate of a nucleophilic substitution reaction was exploited for the synthesis of two constitutionally isomeric oriented rotaxanes. Then, the synthesis and characterization of several hetero-functionalised calix[6]arene derivatives and the possibility to obtain molecular muscle prototypes was reported. The ability of calix[6]arenes to form oriented pseudorotaxane towards dialkyl viologen axles was then exploited for the synthesis of two calixarene-based [2]catenanes. As last part of this thesis, studies on the electrochemical response of the threading-dethreading process of calix[6]arene-based pseudorotaxanes and rotaxanes supported on glassy carbon electrodes are reported.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cocrystallization of the molecule of interest could be a smart and dainty way to tune solubility properties of solid phases leaving the molecule chemically unchanged, hence it is widely investigated by companies and by solid state scientists. Despite of this extremely high interest towards cocrystallization no particular emphasis has been paid to using it as a means to stabilize liquid molecules. In this work we define a benchmark of relevant molecules for human health that have been combined with suitable partners according to crystal engineering methods in order to obtain cocrystals. Solubility properties in different solvents of cocrystals new solid phases have been tested and compared to the properties of the drugs. A further approach to deal with volatile compounds is molecular confinement inside molecular scaffold. Nowadays metal organic frameworks (MOFs) are studied in many fields ranging from catalysis to trapping or storage of gases, such as hydrogen, methane, CO2 thanks to their extremely high porosity. Our goal is to confine liquid guests of biological relevance inside MOF pores, monitoring via X-ray diffraction, spectroscopy and thermal analysis the stabilization of the molecule of interest inside the cavities.