5 resultados para wave spectra
em Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer
Resumo:
When considering deployment of wave energy converters at a given site, it is of prime importance from both a technical and an economical point of view to accurately assess the total yearly energy that can be extracted by the given device. Especially, to be considered is the assessment of the efficiency of the device over the widest span of the sea-states spectral bandwidth. Hence, the aim of this study is to assess the biases and errors introduced on extracted power classically computed using spectral data derived from analytical functions such as a JONSWAP spectrum, compared to the power derived using actual wave spectra obtained from a spectral hindcast database.
Resumo:
The poorly understood attenuation of surface waves in sea ice is generally attributed to the combination of scattering and dissipation. Scattering and dissipation have very different effects on the directional and temporal distribution of wave energy, making it possible to better understand their relative importance by analysis of swell directional spreading and arrival times. Here we compare results of a spectral wave model – using adjustable scattering and dissipation attenuation formulations – with wave measurements far inside the ice pack. In this case, scattering plays a negligible role in the attenuation of long swells. Specifically, scattering-dominated attenuation would produce directional wave spectra much broader than the ones recorded, and swell events arriving later and lasting much longer than observed. Details of the dissipation process remain uncertain. Average dissipation rates are consistent with creep effects but are 12 times those expected for a laminar boundary layer under a smooth solid ice plate.
Resumo:
Interactions between surface waves and sea ice are thought to be an important, but poorly understood, physical process in the atmosphere-ice-ocean system. In this work, airborne scanning lidar was used to observe ocean waves propagating into the marginal ice zone (MIZ). These represent the first direct spatial measurements of the surface wave field in the polar MIZ. Data were compared against two attenuation models, one based on viscous dissipation and one based on scattering. Both models were capable of reproducing the measured wave energy. The observed wavenumber dependence of attenuation was found to be consistent with viscous processes, while the spectral spreading of higher wavenumbers suggested a scattering mechanism. Both models reproduced a change in peak direction due to preferential directional filtering. Floe sizes were recorded using co-located visible imagery, and their distribution was found to be consistent with ice breakup by the wave field.
Resumo:
This work presents the analysis of wave and turbulence measurements collected at a tidal energy site. A new method is introduced to produce more consistent and rigorous estimations of the velocity fluctuations power spectral densities. An analytical function is further proposed to fit the observed spectra and could be input to the numerical models predicting power production and structural loading on tidal turbines. Another new approach is developed to correct for the effect of the Doppler noise on the high frequencies power spectral densities. The analysis of velocity time series combining wave and turbulent contributions demonstrates that the turbulent motions are coherent throughout the water column, rendering the wave coherence-based methods not applicable to our dataset. To avoid this problem, an alternative approach relying on the pressure data collected by the ADCP is introduced and shows appreciable improvement in the wave-turbulence separation.
Resumo:
Recent developments in the physical parameterizations available in spectral wave models have already been validated, but there is little information on their relative performance especially with focus on the higher order spectral moments and wave partitions. This study concentrates on documenting their strengths and limitations using satellite measurements, buoy spectra, and a comparison between the different models. It is confirmed that all models perform well in terms of significant wave heights; however higher-order moments have larger errors. The partition wave quantities perform well in terms of direction and frequency but the magnitude and directional spread typically have larger discrepancies. The high-frequency tail is examined through the mean square slope using satellites and buoys. From this analysis it is clear that some models behave better than the others, suggesting their parameterizations match the physical processes reasonably well. However none of the models are entirely satisfactory, pointing to poorly constrained parameterizations or missing physical processes. The major space-time differences between the models are related to the swell field stressing the importance of describing its evolution. An example swell field confirms the wave heights can be notably different between model configurations while the directional distributions remain similar. It is clear that all models have difficulty in describing the directional spread. Therefore, knowledge of the source term directional distributions is paramount in improving the wave model physics in the future.