3 resultados para water depths

em Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Pianosa Contourite Depositional System (CDS) is located in the Corsica Trough (Northern Tyrrhenian Sea), a confined basin dominated by mass transport and contour currents in the eastern flank and by turbidity currents in the western flank. The morphologic and stratigraphic characterisation of the Pianosa CDS is based on multibeam bathymetry, seismic reflection data (multi-channel high resolution mini GI gun, single-channel sparker and CHIRP), sediment cores and ADCP data. The Pianosa CDS is located at shallow to intermediate water depths (170 to 850 m water depth) and is formed under the influence of the Levantine Intermediate Water (LIW). It is 120 km long, has a maximum width of 10 km and is composed of different types of muddy sediment drifts: plastered drift, separated mounded drift, sigmoid drift and multicrested drift. The reduced tectonic activity in the Corsica Trough since the early Pliocene permits to recover a sedimentary record of the contourite depositional system that is only influenced by climate fluctuations. Contourites started to develop in the Middle-Late Pliocene, but their growth was enhanced since the Middle Pleistocene Transition (0.7–0.9 Ma). Although the general circulation of the LIW, flowing northwards in the Corsica Trough, remained active all along the history of the system, contourite drift formation changed, controlled by sediment influx and bottom current velocity. During periods of sea level fall, fast bottom currents often eroded the drift crest in the middle and upper slope. At that time the proximity of the coast to the shelf edge favoured the formation of bioclastic sand deposits winnowed by bottom currents. Higher sediment accumulation of mud in the drifts occurred during periods of fast bottom currents and high sediment availability (i.e. high activity of turbidity currents), coincident with periods of sea level low-stands. Condensed sections were formed during sea level high-stands, when bottom currents were more sluggish and the turbidite system was disconnected, resulting in a lower sediment influx.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

VESPA was a successful 25 day research cruise on R/V l'Atalante that took place in May and June 2015. The main aim was to acquire new rock samples from extinct volcanoes on the Norfolk, Loyalty and Three Kings ridges, which connect New Caledonia and New Zealand. This was in order to test various hypotheses of Late Cretaceous-Miocene SW Pacific tectonic development relating to (i) nature and duration of magmatism on the ridges; (ii) timing of subduction initiation east of northern Zealandia; (iii) postulated subduction polarity changes. A total of 3400 km of 'sismique rapide' shallow reflection seismic data were acquired and processed onboard. The seismic lines provided a very useful structural-stratigraphic framework for the rock dredging. Combined with multibeam bathymetry data they allowed intelligent targeting of acoustic basement (lavas) and specific seismic reflectors (sedimentary strata) on rocky slopes and fault scarps. Different stratigraphic levels of the Loyalty and Three Kings Ridge volcanic piles were sampled by dredging at different water depths on the Cook Fracture Zone and Cagou Trough fault scarps. By the end of the cruise, 43 dredges had been attempted and 36 of them yielded igneous or sedimentary rocks potentially useful to the VESPA project. Onboard use of a portable X-ray fluorescence unit confirmed the presence of intraplate (but no arc) volcanoes on the Norfolk Ridge and presence of arc, intraplate and shoshonitic volcanoes on the Loyalty and Three Kings Ridges. A total of 770 kg of rock was retained for post-cruise analysis in New Caledonia, France and New Zealand. Future work will include micropaleontological dating of sedimentary rocks, U-Pb and Ar-Ar isotopic dating of igneous rocks, and whole rock geochemical and tracer isotope analyses. We are optimistic that many of the initial research hypotheses will be able to be tested.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Arctic continental margin contains large amounts of methane in the form of methane hydrates. The west Svalbard continental slope is an area where active methane seeps have been reported near the landward limit of the hydrate stability zone. The presence of bottom simulating reflectors (BSR) on seismic reflection data in water depths greater than 600 m suggests the presence of free gas beneath gas hydrates in the area. Resistivity obtained from marine controlled source electromagnetic (CSEM) data provides a useful complement to seismic methods for detecting shallow hydrate and gas as they are more resistive than surrounding water saturated sediments. We acquired two CSEM lines in the west Svalbard continental slope, extending from the edge of the continental shelf (250 m water depth) to water depths of around 800 m. High resistivities (5-12 Ωm) observed above the BSR support the presence of gas hydrate in water depths greater than 600 m. High resistivities (3-4 Ωm) at 390-600 m water depth also suggest possible hydrate occurrence within the gas hydrate stability zone (GHSZ) of the continental slope. In addition, high resistivities (4-8 Ωm) landward of the GHSZ are coincident with high-amplitude reflectors and low velocities reported in seismic data that indicate the likely presence of free gas. Pore space saturation estimates using a connectivity equation suggest 20-50% hydrate within the lower slope sediments and less than 12% within the upper slope sediments. A free gas zone beneath the GHSZ (10-20% gas saturation) is connected to the high free gas saturated (10-45%) area at the edge of the continental shelf, where most of the seeps are observed. This evidence supports the presence of lateral free gas migration beneath the GHSZ towards the continental shelf.