4 resultados para variance component models
em Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer
Resumo:
Activity of 7-ethoxyresorufin-O-deethylase (EROD) in fish is certainly the best-studied biomarker of exposure applied in the field to evaluate biological effects of contamination in the marine environment. Since 1991, a feasibility study for a monitoring network using this biomarker of exposure has been conducted along French coasts. Using data obtained during several cruises, this study aims to determine the number of fish required to detect a given difference between 2 mean EROD activities, i.e. to achieve an a priori fixed statistical power (l-beta) given significance level (alpha), variance estimations and projected ratio of unequal sample sizes (k). Mean EROD activity and standard error were estimated at each of 82 sampling stations. The inter-individual variance component was dominant in estimating the variance of mean EROD activity. Influences of alpha, beta, k and variability on sample sizes are illustrated and discussed in terms of costs. In particular, sample sizes do not have to be equal, especially if such a requirement would lead to a significant cost in sampling extra material. Finally, the feasibility of longterm monitoring is discussed.
Resumo:
Despite recent advances in ocean observing arrays and satellite sensors, there remains great uncertainty in the large-scale spatial variations of upper ocean salinity on the interannual to decadal timescales. Consonant with both broad-scale surface warming and the amplification of the global hydrological cycle, observed global multidecadal salinity changes typically have focussed on the linear response to anthropogenic forcing but not on salinity variations due to changes in the static stability and or variability due to the intrinsic ocean or internal climate processes. Here, we examine the static stability and spatiotemporal variability of upper ocean salinity across a hierarchy of models and reanalyses. In particular, we partition the variance into time bands via application of singular spectral analysis, considering sea surface salinity (SSS), the Brunt Väisälä frequency (N2), and the ocean salinity stratification in terms of the stabilizing effect due to the haline part of N2 over the upper 500m. We identify regions of significant coherent SSS variability, either intrinsic to the ocean or in response to the interannually varying atmosphere. Based on consistency across models (CMIP5 and forced experiments) and reanalyses, we identify the stabilizing role of salinity in the tropics—typically associated with heavy precipitation and barrier layer formation, and the role of salinity in destabilizing upper ocean stratification in the subtropical regions where large-scale density compensation typically occurs.
Resumo:
The Ocean Model Intercomparison Project (OMIP) aims to provide a framework for evaluating, understanding, and improving the ocean and sea-ice components of global climate and earth system models contributing to the Coupled Model Intercomparison Project Phase 6 (CMIP6). OMIP addresses these aims in two complementary manners: (A) by providing an experimental protocol for global ocean/sea-ice models run with a prescribed atmospheric forcing, (B) by providing a protocol for ocean diagnostics to be saved as part of CMIP6. We focus here on the physical component of OMIP, with a companion paper (Orr et al., 2016) offering details for the inert chemistry and interactive biogeochemistry. The physical portion of the OMIP experimental protocol follows that of the interannual Coordinated Ocean-ice Reference Experiments (CORE-II). Since 2009, CORE-I (Normal Year Forcing) and CORE-II have become the standard method to evaluate global ocean/sea-ice simulations and to examine mechanisms for forced ocean climate variability. The OMIP diagnostic protocol is relevant for any ocean model component of CMIP6, including the DECK (Diagnostic, Evaluation and Characterization of Klima experiments), historical simulations, FAFMIP (Flux Anomaly Forced MIP), C4MIP (Coupled Carbon Cycle Climate MIP), DAMIP (Detection and Attribution MIP), DCPP (Decadal Climate Prediction Project), ScenarioMIP (Scenario MIP), as well as the ocean-sea ice OMIP simulations. The bulk of this paper offers scientific rationale for saving these diagnostics.
Resumo:
The Ocean Model Intercomparison Project (OMIP) is an endorsed project in the Coupled Model Intercomparison Project Phase 6 (CMIP6). OMIP addresses CMIP6 science questions, investigating the origins and consequences of systematic model biases. It does so by providing a framework for evaluating (including assessment of systematic biases), understanding, and improving ocean, sea-ice, tracer, and biogeochemical components of climate and earth system models contributing to CMIP6. Among the WCRP Grand Challenges in climate science (GCs), OMIP primarily contributes to the regional sea level change and near-term (climate/decadal) prediction GCs. OMIP provides (a) an experimental protocol for global ocean/sea-ice models run with a prescribed atmospheric forcing; and (b) a protocol for ocean diagnostics to be saved as part of CMIP6. We focus here on the physical component of OMIP, with a companion paper (Orr et al., 2016) detailing methods for the inert chemistry and interactive biogeochemistry. The physical portion of the OMIP experimental protocol follows the interannual Coordinated Ocean-ice Reference Experiments (CORE-II). Since 2009, CORE-I (Normal Year Forcing) and CORE-II (Interannual Forcing) have become the standard methods to evaluate global ocean/sea-ice simulations and to examine mechanisms for forced ocean climate variability. The OMIP diagnostic protocol is relevant for any ocean model component of CMIP6, including the DECK (Diagnostic, Evaluation and Characterization of Klima experiments), historical simulations, FAFMIP (Flux Anomaly Forced MIP), C4MIP (Coupled Carbon Cycle Climate MIP), DAMIP (Detection and Attribution MIP), DCPP (Decadal Climate Prediction Project), ScenarioMIP, HighResMIP (High Resolution MIP), as well as the ocean/sea-ice OMIP simulations.