3 resultados para toolbox

em Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The air-sea flux of greenhouse gases (e.g. carbon dioxide, CO2) is a critical part of the climate system and a major factor in the biogeochemical development of the oceans. More accurate and higher resolution calculations of these gas fluxes are required if we are to fully understand and predict our future climate. Satellite Earth observation is able to provide large spatial scale datasets that can be used to study gas fluxes. However, the large storage requirements needed to host such data can restrict its use by the scientific community. Fortunately, the development of cloud-computing can provide a solution. Here we describe an open source air-sea CO2 flux processing toolbox called the ‘FluxEngine’, designed for use on a cloud-computing infrastructure. The toolbox allows users to easily generate global and regional air-sea CO2 flux data from model, in situ and Earth observation data, and its air-sea gas flux calculation is user configurable. Its current installation on the Nephalae cloud allows users to easily exploit more than 8 terabytes of climate-quality Earth observation data for the derivation of gas fluxes. The resultant NetCDF data output files contain >20 data layers containing the various stages of the flux calculation along with process indicator layers to aid interpretation of the data. This paper describes the toolbox design, the verification of the air-sea CO2 flux calculations, demonstrates the use of the tools for studying global and shelf-sea air-sea fluxes and describes future developments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The CATARINA Leg1 cruise was carried out from June 22 to July 24 2012 on board the B/O Sarmiento de Gamboa, under the scientific supervision of Aida Rios (CSIC-IIM). It included the occurrence of the OVIDE hydrological section that was performed in June 2002, 2004, 2006, 2008 and 2010, as part of the CLIVAR program (name A25) ), and under the supervision of Herlé Mercier (CNRSLPO). This section begins near Lisbon (Portugal), runs through the West European Basin and the Iceland Basin, crosses the Reykjanes Ridge (300 miles north of Charlie-Gibbs Fracture Zone, and ends at Cape Hoppe (southeast tip of Greenland). The objective of this repeated hydrological section is to monitor the variability of water mass properties and main current transports in the basin, complementing the international observation array relevant for climate studies. In addition, the Labrador Sea was partly sampled (stations 101-108) between Greenland and Newfoundland, but heavy weather conditions prevented the achievement of the section south of 53°40’N. The quality of CTD data is essential to reach the first objective of the CATARINA project, i.e. to quantify the Meridional Overturning Circulation and water mass ventilation changes and their effect on the changes in the anthropogenic carbon ocean uptake and storage capacity. The CATARINA project was mainly funded by the Spanish Ministry of Sciences and Innovation and co-funded by the Fondo Europeo de Desarrollo Regional. The hydrological OVIDE section includes 95 surface-bottom stations from coast to coast, collecting profiles of temperature, salinity, oxygen and currents, spaced by 2 to 25 Nm depending on the steepness of the topography. The position of the stations closely follows that of OVIDE 2002. In addition, 8 stations were carried out in the Labrador Sea. From the 24 bottles closed at various depth at each stations, samples of sea water are used for salinity and oxygen calibration, and for measurements of biogeochemical components that are not reported here. The data were acquired with a Seabird CTD (SBE911+) and an SBE43 for the dissolved oxygen, belonging to the Spanish UTM group. The software SBE data processing was used after decoding and cleaning the raw data. Then, the LPO matlab toolbox was used to calibrate and bin the data as it was done for the previous OVIDE cruises, using on the one hand pre and post-cruise calibration results for the pressure and temperature sensors (done at Ifremer) and on the other hand the water samples of the 24 bottles of the rosette at each station for the salinity and dissolved oxygen data. A final accuracy of 0.002°C, 0.002 psu and 0.04 ml/l (2.3 umol/kg) was obtained on final profiles of temperature, salinity and dissolved oxygen, compatible with international requirements issued from the WOCE program.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Statistical approaches to study extreme events require, by definition, long time series of data. In many scientific disciplines, these series are often subject to variations at different temporal scales that affect the frequency and intensity of their extremes. Therefore, the assumption of stationarity is violated and alternative methods to conventional stationary extreme value analysis (EVA) must be adopted. Using the example of environmental variables subject to climate change, in this study we introduce the transformed-stationary (TS) methodology for non-stationary EVA. This approach consists of (i) transforming a non-stationary time series into a stationary one, to which the stationary EVA theory can be applied, and (ii) reverse transforming the result into a non-stationary extreme value distribution. As a transformation, we propose and discuss a simple time-varying normalization of the signal and show that it enables a comprehensive formulation of non-stationary generalized extreme value (GEV) and generalized Pareto distribution (GPD) models with a constant shape parameter. A validation of the methodology is carried out on time series of significant wave height, residual water level, and river discharge, which show varying degrees of long-term and seasonal variability. The results from the proposed approach are comparable with the results from (a) a stationary EVA on quasi-stationary slices of non-stationary series and (b) the established method for non-stationary EVA. However, the proposed technique comes with advantages in both cases. For example, in contrast to (a), the proposed technique uses the whole time horizon of the series for the estimation of the extremes, allowing for a more accurate estimation of large return levels. Furthermore, with respect to (b), it decouples the detection of non-stationary patterns from the fitting of the extreme value distribution. As a result, the steps of the analysis are simplified and intermediate diagnostics are possible. In particular, the transformation can be carried out by means of simple statistical techniques such as low-pass filters based on the running mean and the standard deviation, and the fitting procedure is a stationary one with a few degrees of freedom and is easy to implement and control. An open-source MAT-LAB toolbox has been developed to cover this methodology, which is available at https://github.com/menta78/tsEva/(Mentaschi et al., 2016).