3 resultados para times of application
em Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer
Resumo:
Fluxes of nutrients (NH sub(4) super(+), NO sub(3) super(-), PO sub(4) super(3-) and Si(OH) sub(4)) were studied on an intertidal mudflat in Marennes-Oleron Bay, France, at two different seasons and at different times of the emersion period. Fluxes through the sediment-water interface were both calculated from vertical profiles of nutrient concentration in pore-water (diffusive fluxes, JD) and measured in light and dark benthic mini-chambers (measured fluxes, J sub(0)). Results indicate that ammonia was mainly released in summer while nitrate was mainly taken up in late winter. This uptake from the overlying water was probably due to the coupling of nitrification-denitrification within the sediment. The J sub(0) /J sub(D) ratio further indicates that bioturbation likely enhanced ammonia release in summer. Concerning phosphate, the comparison of diffusive and measured fluxes suggests that PO sub(4) super(3-) could be assimilated by the biofilm in winter while it was released in summer at a high rate due to both bioturbation and desorption because of the relative summer anoxic conditions. Silica was always released by the sediment, but at a higher rate in summer. Statistically significant differences in measured fluxes were detected in dark chambers at different times of low tide, thus suggesting a short-term variability of fluxes. Microphytobenthos preferred ammonia to nitrate, but assimilated nitrate when ammonia was not available. It also turned out that benthic cells could be limited in nitrogen during low tide in late winter. In summer, ammonia was not limiting and microphytobenthic activity significantly decreased the measured flux of NH sub(4) super(+) in the middle of low tide when its photosynthetic capacity was highest.
Resumo:
Small-scale spatial and temporal variability in animal abundance is an intrinsic characteristic of marine ecosystems but remains largely unknown for most animals, including coral reef fishes. In this study, we used a remote autonomous unbaited video system and recorded reef fish assemblages during daylight hours, 10 times a day for 34 consecutive days in a branching coral patch of the lagoon of New Caledonia. In total, 50 031 fish observations belonging to 114 taxa, 66 genera and 31 families were recorded in 256 recorded videos. Carnivores and herbivore-detritus feeders dominated the trophic structure. We found significant variations in the composition of fish assemblages between times of day. Taxa richness and fish abundance were greater in the early morning and in the late afternoon than during the day. Fourteen taxa displayed well-defined temporal patterns in abundance with one taxon influenced by time of day, six influenced by tidal state and seven influenced by both time of day and tidal state. None of these 14 taxa were piscivores, 10 were herbivore-detritus feeders, three were carnivores and one was plankton feeder. Our results suggest a diel migration from feeding grounds to shelter areas and highlight the importance of taking into account small-scale temporal variability in animal diversity and abundance when studying connectivity between habitats and monitoring communities.
Resumo:
Important historical informations on the temporal changes of anthropogenic pollution in marine environment can be assessed using sediment analysis. Dating is a crucial prerequisite to reconstruct pollution events, to calculate fluxes, and thus to allow comparison between different sites. This work presents estimates of accumulation rates of sediments in the Bay of Biscay. Fives cores were collected during RIKEAU 2002 cruise on board o/v Thalia in order to study temporal changes in PAH and organohalogens compounds content of sediment. We compare chronostratigraphic estimates on cores derived from the natural radionuclide 210Pb in excess with estimates from the known times of introduction of the artificial radionuclide 137Cs to the environment. 210Pb, 226Ra and 137Cs were measured directly by non-destructive gamma spectrometry using a well type γ-detector. Total 210Pb and 226Ra activities vary from 30 to 150 mBq g-1, and 20 to 36 mBq g-1 respectively; 137Cs presents lower levels (< 5 mBq g-1). Profiles of 210Pb in three cores present a well mixed layer, from 2-3 to 10 cm, in the uppermost sediments, followed by an exponential decrease of activities, suitable for the determination of sedimentation rates. Under constant flux and sedimentation rate assumptions, vertical accretion rates derived from 210Pb present a large range from nearly 0.1 cm yr-1 up to almost 0.3 cm yr-1. Differences are mainly due to relative position of studied cores regarding the muddy patch. Although the moderate level of 137Cs limits the accuracy of this dating method, profiles of 137Cs with depth strengthen mean rates derived from 210Pb data. The implication of this dating on pollutant inputs in sediments of the Bay of Biscay is briefly discussed.