12 resultados para the Mediterranean

em Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer


Relevância:

100.00% 100.00%

Publicador:

Resumo:

significant amount of Expendable Bathythermograph (XBT) data has been collected in the Mediterranean Sea since 1999 in the framework of operational oceanography activities. The management and storage of such a volume of data poses significant challenges and opportunities. The SeaDataNet project, a pan-European infrastructure for marine data diffusion, provides a convenient way to avoid dispersion of these temperature vertical profiles and to facilitate access to a wider public. The XBT data flow, along with the recent improvements in the quality check procedures and the consistence of the available historical data set are described. The main features of SeaDataNet services and the advantage of using this system for long-term data archiving are presented. Finally, focus on the Ligurian Sea is included in order to provide an example of the kind of information and final products devoted to different users can be easily derived from the SeaDataNet web portal.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Mediterranean Sea constitutes a unique environment to study cold-seep ecosystems due to the presence of different geodynamic settings, from an active margin along the Mediterranean Ridge (MR) to a passive margin in the Nile Deep-Sea Fan (NDSF). We attempted to identify the structure of benthic communities associated with the Napoli and Amsterdam mud volcanoes (MVs) located on the MR and to establish the links between faunal distribution and environmental conditions at different spatial scales. Comparison between the 2 MVs revealed that the faunal distribution seemed to be mainly controlled by the characteristics of the microhabitats. On both geological structures, the variability between the different microhabitats was higher than the variability observed between replicates of the same microhabitat, and the distribution of macro-fauna was apparently linked to gradients in physico-chemical conditions. The peripheral sites from Napoli were generally more oxygenated and harboured lower species richness than the active sites. The reduced sediment microhabitat from Amsterdam presented the highest methane concentrations and was mainly colonised by symbiont-bearing vesicomyid bivalves and heterotrophic dorvilleid polychaetes. Overall, a higher taxonomic diversity was observed on Napoli. Sub-stratum type was hypothesised to be the second factor influencing faunal distribution. The results of this study highlight the high heterogeneity of faunal communities associated with seep ecosystems within this region and the need to pursue investigations at various spatial and temporal scales.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Understanding the natural evolution of a river–delta–sea system is important to develop a strong scientific basis for efficient integrated management plans. The distribution of sediment fluxes is linked with the natural connection between sediment source areas situated in uplifting mountain chains and deposition in plains, deltas and, ultimately, in the capturing oceans and seas. The Danube River–western Black Sea is one of the most active European systems in terms of sediment re-distribution that poses significant societal challenges. We aim to derive the tectonic and sedimentological background of human-induced changes in this system and discuss their interplay. This is obtained by analysing the tectonic and associated vertical movements, the evolution of relevant basins and the key events affecting sediment routing and deposition. The analysis of the main source and sink areas is focused in particular on the Miocene evolution of the Carpatho-Balkanides, Dinarides and their sedimentary basins including the western Black Sea. The vertical movements of mountains chains created the main moments of basin connectivity observed in the Danube system. Their timing and effects are observed in sediments deposited in the vicinity of gateways, such as the transition between the Pannonian/Transylvanian and Dacian basins and between the Dacian Basin and western Black Sea. The results demonstrate the importance of understanding threshold conditions driving rapid basins connectivity changes superposed over the longer time scale of tectonic-induced vertical movements associated with background erosion and sedimentation. The spatial and temporal scale of such processes is contrastingly different and challenging. The long-term patterns interact with recent or anthropogenic induced modifications in the natural system and may result in rapid changes at threshold conditions that can be quantified and predicted. Their understanding is critical because of frequent occurrence during orogenic evolution, as commonly observed in the Mediterranean area and discussed elsewhere.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Conservation of the seven lagoons of the Palavas complex (southern France) has been severely impaired by nutrient over-enrichment during at least four decades. The effluents of the Montpellier wastewater treatment plant (WWTP) represented the main nutrient input. To improve the water quality of these lagoons, this WWTP was renovated and upgraded and, since the end of 2005, its effluents have been discharged 11 km offshore into the Mediterranean (total investment €150 M). Possibilities of ecosystem restoration as part of a conservation programme were explored by a focus group of experts. Their tasks were: (i) to evaluate the impact of the reduction of the nutrient input; (ii) if necessary, to design additional measures for an active restoration programme; and (iii) to predict ecosystem trajectories for the different cases. Extension of Magnoliophyta meadows can be taken as a proxy for ecosystem restoration as they favour the increase of several fish (seahorse) and bird (ducks, swans, herons) species, albeit they represent a trade-off for greater flamingos. Additional measures for active ecosystem restoration were only recommended for the most impaired lagoon Méjean, while the least impaired lagoon Ingril is already on a trajectory of spontaneous recovery. A multiple contingent valuation considering four different management options for the Méjean lagoon was used in a pilot study based on face-to-face interviews with 159 respondents. Three levels of ecosystem restoration were expressed in terms of recovery of Magnoliophyta meadows, including their impact on emblematic fish and avifauna. These were combined with different options for access (status quo, increasing access, increasing access with measures to reduce disturbance). The results show a willingness of local populations to pay per year about €25 for the highest level of ecological restoration, while they were only willing to allocate about €5 for additional footpaths and hides.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Vulcanodinium rugosum, a recently described species, produces pinnatoxins. The IFR-VRU-01 strain, isolated from a French Mediterranean lagoon in 2010 and identified as the causative dinoflagellate contaminating mussels in the Ingril Lagoon (French Mediterranean) with pinnatoxin-G, was grown in an enriched natural seawater medium. We tested the effect of temperature and salinity on growth, pinnatoxin-G production and chlorophyll a levels of this dinoflagellate. These factors were tested in combinations of five temperatures (15, 20, 25, 30 and 35 °C) and five salinities (20, 25, 30, 35 and 40) at an irradiance of 100 µmol photon m−2 s−1. V. rugosum can grow at temperatures and salinities ranging from 20 °C to 30 °C and 20 to 40, respectively. The optimal combination for growth (0.39 ± 0.11 d−1) was a temperature of 25 °C and a salinity of 40. Results suggest that V. rugosum is euryhaline and thermophile which could explain why this dinoflagellate develops in situ only from June to September. V. rugosum growth rate and pinnatoxin-G production were highest at temperatures ranging between 25 and 30 °C. This suggests that the dinoflagellate may give rise to extensive blooms in the coming decades caused by the climate change-related increases in temperature expected in the Mediterranean coasts.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The red pandora, Pagellus bellottii Steindachner, 1882, is a tropical and subtropical demersal Sparidae (Porgies) that lives over hard or sandy bottoms in coastal marine waters. It mostly occurs at depths ranging from 10 to 50 metres. It is distributed in the eastern Atlantic, from the Strait of Gibraltar to Angola and the Canary Islands where it is occasionally recorded (Bauchot and Hureau, 1986; Franqueville, 1983). The species is also recorded in the southwestern Mediterranean, in the Alboran Sea, off the Algerian coasts and in the Gulf of Gabes (Oral, 2010). The records of the species in the eastern Mediterranean, Syrian and Israeli waters (Fricke, et al. 2014, Fig. 1) is questioned. We consider these records are misidentification of Pagrus pagrus (Linnaeus, 1758). Pagellus bellottii was also included in the checklist of the fishes from Portugal as a consequence of records coming from the Algarve region, about 36°59′ N, 8° W, the northernmost records in Atlantic waters (de Castro, 1967; Erzini et al., 1996; Carneiro et al., 2014; Carneiro com. pers.). Some specimens were also recorded in Spanish Mediterranean waters, in the Bay of Almería about 36°47′ N, 2°25′ W (Lucena, et al. 1982), the northernmost records for the Mediterranean waters. Herein, the first record of P. bellottii in the Bay of Biscay is reported.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Over the past several decades, thousands of otoliths, bivalve shells, and scales have been collected for the purposes of age determination and remain archived in European and North American fisheries laboratories. Advances in digital imaging and computer software combined with techniques developed by tree-ring scientists provide a means by which to extract additional levels of information in these calcified structures and generate annually resolved (one value per year), multidecadal time-series of population-level growth anomalies. Chemical and isotopic properties may also be extracted to provide additional information regarding the environmental conditions these organisms experienced.Given that they are exactly placed in time, chronologies can be directly compared to instrumental climate records, chronologies from other regions or species, or time-seriesof other biological phenomena. In this way, chronologies may be used to reconstruct historical ranges of environmental variability, identify climatic drivers of growth, establish linkages within and among species, and generate ecosystem-level indicators. Following the first workshop in Hamburg, Germany, in December 2014, the second workshop on Growth increment Chronologies in Marine Fish: climate-ecosystem interactions in the North Atlantic (WKGIC2) met at the Mediterranean Institute for Advanced Studies headquarters in Esporles, Spain, on 18–22 April 2016, chaired by Bryan Black (USA) and Christoph Stransky (Germany).Thirty-six participants from fifteen different countries attended. Objectives were to i) review the applications of chronologies developed from growth-increment widths in the hard parts (otoliths, shells, scales) of marine fish and bivalve species ii) review the fundamentals of crossdating and chronology development, iii) discuss assumptions and limitations of these approaches, iv) measure otolith growth-increment widths in image analysis software, v) learn software to statistically check increment dating accuracy, vi) generate a growth increment chronology and relate it to climate indices, and vii) initiate cooperative projects or training exercises to commence after the workshop.The workshop began with an overview of tree-ring techniques of chronology development, including a hands-on exercise in cross dating. Next, we discussed the applications of fish and bivalve biochronologies and the range of issues that could be addressed. We then reviewed key assumptions and limitations, especially those associated with short-lived species for which there are numerous and extensive otolith archives in European fisheries labs. Next, participants were provided with images of European plaice otoliths from the North Sea and taught to measure increment widths in image analysis software. Upon completion of measurements, techniques of chronology development were discussed and contrasted to those that have been applied for long-lived species. Plaice growth time-series were then related to environmental variability using the KNMI Climate Explorer. Finally, potential future collaborations and funding opportunities were discussed, and there was a clear desire to meet again to compare various statistical techniques for chronology development using a range existing fish, bivalve, and tree growth-increment datasets. Overall, we hope to increase the use of these techniques, and over the long term, develop networks of biochronologies for integrative analyses of ecosystem functioning and relationships to long-term climate variability and fishing pressure.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The European sea bass (Dicentrarchus labrax) is an economically important fish native to the Mediterranean and Northern Atlantic. Its complex life cycle involves many migrations through temperature gradients that affect the energetic demands of swimming. Previous studies have shown large intraspecific variation in swimming performance and temperature tolerance, which could include deleterious and advantageous traits under the evolutionary pressure of climate change. However, little is known of the underlying determinants of this individual variation. We investigated individual variation in temperature tolerance in 30 sea bass by exposing them to a warm temperature challenge test. The eight most temperature-tolerant and eight most temperature-sensitive fish were then studied further to determine maximal swimming speed (U-CAT), aerobic scope and post-exercise oxygen consumption. Finally, ventricular contractility in each group was determined using isometric muscle preparations. The temperature-tolerant fish showed lower resting oxygen consumption rates, possessed larger hearts and initially recovered from exhaustive exercise faster than the temperature-sensitive fish. Thus, whole-animal temperature tolerance was associated with important performance traits. However, the temperature-tolerant fish also demonstrated poorer maximal swimming capacity (i.e. lower UCAT) than their temperature-sensitive counterparts, which may indicate a trade-off between temperature tolerance and swimming performance. Interestingly, the larger relative ventricular mass of the temperature-tolerant fish did not equate to greater ventricular contractility, suggesting that larger stroke volumes, rather than greater contractile strength, may be associated with thermal tolerance in this species.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

European sea bass, Dicentrarchus labrax, is a highly valuable species in Europe, both for aquaculture in the Mediterranean Sea and for commercial and recreational fisheries in the North East Atlantic Ocean. Subjected to increasing fishing pressure, the wild population has recently experienced significant recruitment fluctuation as well as a northward extension of its distribution area in the North Sea. While the nature of the ecological and/or physiological processes involved remains unresolved, ontogenetic habitat shifts and adult site fidelity could increase the species’ vulnerability to climate change and overfishing. As managers look for expert information to propose management scenarios leading to sustainable exploitation, exploratory modelling appears to be a cost-efficient approach to enhance the understanding of recruitment dynamics and the spatio-temporal scales over which fish populations function. A conceptual modelling framework and its specific data requirements are discussed to tackle some sound ecological questions regarding this species. We consequently provide an updated review of current knowledge on bass population structure, biology and ecology. This paper will hence be particularly valuable to develop spatially-explicit models of European sea bass dynamics under environmental and anthropogenic forcing. Knowledge gaps requiring further research efforts are also reported.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In September 2015, the Working Group on Biological Parameters (WGBIOP) recommended an otolith exchange for Mullus surmuletus and Mullus barbatus in 2016 (Otolith Exchanges proposals for 2016/2017; ICES, 2015). Kélig Mahe (IFREMER, France) was decided to be the responsible to organise this otolith exchange. Two otolith exchanges (2008, 2011), and two age reading workshops (ICES, 2009; 2012), have been taken place until now (Mahé et al., 2012). A total of 13 readers from 5 countries (France, Spain, Italy, Cyprus and Greece) participated at the exchange of 2016. The otoliths of 465 individuals (345 M. barbatus & 120 M. surmuletus), sampled from 2011 to 2014 in the Mediterranean Sea (Central Adriatic Sea, Cyprus, Levantine Spain coasts, Balearic Islands) were used for this exchange. For both Mullus species, the precision values were very low, the PA ranged between 56 and 67% the CV ranged from 32 to 64% and the APE ranged from 1.9 to 3.6%. The results by area and species showed the same trend with the first age groups presenting the higher CV values and in some cases lower PA values. These results could be explained by the position of the first growth increment and the two different approaches of reading interpretation used by the readers (ICES, 2012).

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A comprehensive database of temperature, salinity and bio-chemical parameters in the Mediterranean and Black Sea has been constructed through comprehensive co-operation between the bordering countries. Statistical climatologies have been computed with all assembled and quality controlled data. The database, designed to initiate and validate prediction models, also represents a system to quality-check new incoming data produced by ocean observing systems.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Biogeochemical-Argo is the extension of the Argo array of profiling floats to include floats that are equipped with biogeochemical sensors for pH, oxygen, nitrate, chlorophyll, suspended particles, and downwelling irradiance. Argo is a highly regarded, international program that measures the changing ocean temperature (heat content) and salinity with profiling floats distributed throughout the ocean. Newly developed sensors now allow profiling floats to also observe biogeochemical properties with sufficient accuracy for climate studies. This extension of Argo will enable an observing system that can determine the seasonal to decadal-scale variability in biological productivity, the supply of essential plant nutrients from deep-waters to the sunlit surface layer, ocean acidification, hypoxia, and ocean uptake of CO2. Biogeochemical-Argo will drive a transformative shift in our ability to observe and predict the effects of climate change on ocean metabolism, carbon uptake, and living marine resource management. Presently, vast areas of the open ocean are sampled only once per decade or less, with sampling occurring mainly in summer. Our ability to detect changes in biogeochemical processes that may occur due to the warming and acidification driven by increasing atmospheric CO2, as well as by natural climate variability, is greatly hindered by this undersampling. In close synergy with satellite systems (which are effective at detecting global patterns for a few biogeochemical parameters, but only very close to the sea surface and in the absence of clouds), a global array of biogeochemical sensors would revolutionize our understanding of ocean carbon uptake, productivity, and deoxygenation. The array would reveal the biological, chemical, and physical events that control these processes. Such a system would enable a new generation of global ocean prediction systems in support of carbon cycling, acidification, hypoxia and harmful algal blooms studies, as well as the management of living marine resources. In order to prepare for a global Biogeochemical-Argo array, several prototype profiling float arrays have been developed at the regional scale by various countries and are now operating. Examples include regional arrays in the Southern Ocean (SOCCOM ), the North Atlantic Sub-polar Gyre (remOcean ), the Mediterranean Sea (NAOS ), the Kuroshio region of the North Pacific (INBOX ), and the Indian Ocean (IOBioArgo ). For example, the SOCCOM program is deploying 200 profiling floats with biogeochemical sensors throughout the Southern Ocean, including areas covered seasonally with ice. The resulting data, which are publically available in real time, are being linked with computer models to better understand the role of the Southern Ocean in influencing CO2 uptake, biological productivity, and nutrient supply to distant regions of the world ocean. The success of these regional projects has motivated a planning meeting to discuss the requirements for and applications of a global-scale Biogeochemical-Argo program. The meeting was held 11-13 January 2016 in Villefranche-sur-Mer, France with attendees from eight nations now deploying Argo floats with biogeochemical sensors present to discuss this topic. In preparation, computer simulations and a variety of analyses were conducted to assess the resources required for the transition to a global-scale array. Based on these analyses and simulations, it was concluded that an array of about 1000 biogeochemical profiling floats would provide the needed resolution to greatly improve our understanding of biogeochemical processes and to enable significant improvement in ecosystem models. With an endurance of four years for a Biogeochemical-Argo float, this system would require the procurement and deployment of 250 new floats per year to maintain a 1000 float array. The lifetime cost for a Biogeochemical-Argo float, including capital expense, calibration, data management, and data transmission, is about $100,000. A global Biogeochemical-Argo system would thus cost about $25,000,000 annually. In the present Argo paradigm, the US provides half of the profiling floats in the array, while the EU, Austral/Asia, and Canada share most the remaining half. If this approach is adopted, the US cost for the Biogeochemical-Argo system would be ~$12,500,000 annually and ~$6,250,000 each for the EU, and Austral/Asia and Canada. This includes no direct costs for ship time and presumes that float deployments can be carried out from future research cruises of opportunity, including, for example, the international GO-SHIP program (http://www.go-ship.org). The full-scale implementation of a global Biogeochemical-Argo system with 1000 floats is feasible within a decade. The successful, ongoing pilot projects have provided the foundation and start for such a system.