6 resultados para the Jiaozhou Bay sediments
em Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer
Resumo:
Important historical informations on the temporal changes of anthropogenic pollution in marine environment can be assessed using sediment analysis. Dating is a crucial prerequisite to reconstruct pollution events, to calculate fluxes, and thus to allow comparison between different sites. This work presents estimates of accumulation rates of sediments in the Bay of Biscay. Fives cores were collected during RIKEAU 2002 cruise on board o/v Thalia in order to study temporal changes in PAH and organohalogens compounds content of sediment. We compare chronostratigraphic estimates on cores derived from the natural radionuclide 210Pb in excess with estimates from the known times of introduction of the artificial radionuclide 137Cs to the environment. 210Pb, 226Ra and 137Cs were measured directly by non-destructive gamma spectrometry using a well type γ-detector. Total 210Pb and 226Ra activities vary from 30 to 150 mBq g-1, and 20 to 36 mBq g-1 respectively; 137Cs presents lower levels (< 5 mBq g-1). Profiles of 210Pb in three cores present a well mixed layer, from 2-3 to 10 cm, in the uppermost sediments, followed by an exponential decrease of activities, suitable for the determination of sedimentation rates. Under constant flux and sedimentation rate assumptions, vertical accretion rates derived from 210Pb present a large range from nearly 0.1 cm yr-1 up to almost 0.3 cm yr-1. Differences are mainly due to relative position of studied cores regarding the muddy patch. Although the moderate level of 137Cs limits the accuracy of this dating method, profiles of 137Cs with depth strengthen mean rates derived from 210Pb data. The implication of this dating on pollutant inputs in sediments of the Bay of Biscay is briefly discussed.
Resumo:
The influence of Loire and Gironde River discharges over the sea surface temperature (SST) in the eastern Bay of Biscay (0.6º–36.6ºW, 44.2º–47.8ºW) was analyzed by means of two complementary databases (MODIS and OISST1/4). The area influenced by river plume showed a different SST when compared with the adjacent oceanic area for the months when the plume attains its highest extension (December, January, and February). Ocean was observed to warm at a rate of approximately 0.3ºC dec−1 while temperature at the area influenced by the rivers cooled at a rate of −0.15ºC dec−1 over the period 1982–2014. The mere presence of a freshwater layer is able to modulate the warming observed at adjacent ocean locations since the coastal area is isolated from the rest of the Bay. This nearshore strip is the only part of the Bay where changes in SST depend on North Atlantic Oscillation (NAO) but not on North Atlantic SST represented by the Atlantic Multidecadal Oscillation (AMO). These different cooling-warming trends are even more patent over the last years (2002–2014) under atmospheric favorable conditions for plume enhancement. River runoff increased at a rate on the order of 120 m3s−1dec−1 over that period and southwesterly winds, which favor the confinement of the plume, showed a positive and significant trend both in duration and intensity. Thus, the coastal strip has been observed to cool at a rate of −0.5°C dec−1.
Resumo:
During the late Quaternary, both external and internal forcings have driven major climatic shifts from glacial to interglacial conditions. Nonlinear climatic steps characterized the transitions leading to these extrema, with intermediate excursions particularly well expressed in the dynamics of the Northern Hemisphere cryosphere. Here we document the impact of these dynamics on the north-eastern North Atlantic Ocean, focussing on the 35-10 ka interval. Sea-surface salinities have been reconstructed quantitatively based on two independent methods from core MD95-2002, recovered from the northern Bay of Biscay adjacent to the axis of the Manche paleoriver outlet and thus in connection with proximal European ice sheets and glaciers. Quantitative reconstructions deriving from dinocyst and planktonic foraminiferal analyses have been combined within a robust chronology to assess the amplitude and timing of hydrological changes in this region. Our study evidences strong pulsed freshwater discharges which may have impacted the North Atlantic Meridional Overturning Circulation.
Resumo:
The temporal variability of delta(13)C in suspended particulate organic matter (POM) and oyster Crassostrea gigas along a salinity gradient was investigated from May 1992 to September 1993 within the estuarine bay of Marennes-Oleron (France). During this period the mean daily discharge of the Charente River exhibited large seasonal variation, with a high discharge from November 1992 to January 1993. Contrary to that at the river mouth and the marine littoral, delta(13)C in POM and in oysters at mid-estuary was affected by the high flood period. The delta(13)C values of POM decreased in mid-estuary and remained at low levels during the high discharge period, indicating an increasing contribution of terrestrial inputs to the estuarine POM pool. At the same site, a remarkable decrease of delta(13)C in oysters occurred between December 1992 and March 1993 (after a time lag compared to the ambient POM), indicating incorporation of terrestrial organic matter in oyster tissues during the high flood discharge. The lag between the delta(13)C decrease in POM and oysters is attributed to the time needed for oyster tissues to incorporate enough newly terrestrial light carbon to be recognized by the delta(13)C measure (about 1 to 2 mo). This time interval depends on tissue turnover time. The delta(13)C POM decrease (i.e. 1.3 parts per thousand) cannot explain entirely the decrease observed in oysters (i.e. 2.3 parts per thousand). In fact, the pattern exhibited by mid-estuarine oysters can be explained by the increasing contribution of terrestrial organic matter to their feeding, and the inability to preferentially utilize specific components of the estuarine POM that are C-13-enriched.
Resumo:
This paper provides new data on the evolution of the Caspian Sea and Black Sea from the Last Glacial Maximum until ca. 12 cal kyr BP. We present new analyses (clay mineralogy, grain-size, Nd isotopes and pollen) applied to sediments from the river terraces in the lower Volga, from the middle Caspian Sea and from the western part of the Black Sea. The results show that during the last deglaciation, the Ponto-Caspian basin collected meltwater and fine-grained sediment from the southern margin of the Scandinavian Ice Sheet (SIS) via the Dniepr and Volga Rivers. It induced the deposition of characteristic red-brownish/chocolate-coloured illite-rich sediments (Red Layers in the Black Sea and Chocolate Clays in the Caspian Sea) that originated from the Baltic Shield area according to Nd data. This general evolution, common to both seas was nevertheless differentiated over time due to the specificities of their catchment areas and due to the movement of the southern margin of the SIS. Our results indicate that in the eastern part of the East European Plain, the meltwater from the SIS margin supplied the Caspian Sea during the deglaciation until ∼13.8 cal kyr BP, and possibly from the LGM. That led to the Early Khvalynian transgressive stage(s) and Chocolate Clays deposition in the now-emerged northern flat part of the Caspian Sea (river terraces in the modern lower Volga) and in its middle basin. In the western part of the East European Plain, our results confirm the release of meltwater from the SIS margin into the Black Sea that occurred between 17.2 and 15.7 cal kyr BP, as previously proposed. Indeed, recent findings concerning the evolution of the southern margin of the SIS and the Black Sea, show that during the last deglaciation, occurred a westward release of meltwater into the North Atlantic (between ca. 20 and 16.7 cal kyr BP), and a southward one into the Black Sea (between 17.2 and 15.7 cal kyr BP). After the Red Layers/Chocolate Clays deposition in both seas and until 12 cal kyr BP, smectite became the dominant clay mineral. The East European Plain is clearly identified as the source for smectite in the Caspian Sea sediments. In the Black Sea, smectite originated either from the East European Plain or from the Danube River catchment. Previous studies consider smectite as being only of Anatolian origin. However, our results highlight both, the European source for smectite and the impact of this source on the depositional environment of the Black Sea during considered period.
Resumo:
The Arctic continental margin contains large amounts of methane in the form of methane hydrates. The west Svalbard continental slope is an area where active methane seeps have been reported near the landward limit of the hydrate stability zone. The presence of bottom simulating reflectors (BSR) on seismic reflection data in water depths greater than 600 m suggests the presence of free gas beneath gas hydrates in the area. Resistivity obtained from marine controlled source electromagnetic (CSEM) data provides a useful complement to seismic methods for detecting shallow hydrate and gas as they are more resistive than surrounding water saturated sediments. We acquired two CSEM lines in the west Svalbard continental slope, extending from the edge of the continental shelf (250 m water depth) to water depths of around 800 m. High resistivities (5-12 Ωm) observed above the BSR support the presence of gas hydrate in water depths greater than 600 m. High resistivities (3-4 Ωm) at 390-600 m water depth also suggest possible hydrate occurrence within the gas hydrate stability zone (GHSZ) of the continental slope. In addition, high resistivities (4-8 Ωm) landward of the GHSZ are coincident with high-amplitude reflectors and low velocities reported in seismic data that indicate the likely presence of free gas. Pore space saturation estimates using a connectivity equation suggest 20-50% hydrate within the lower slope sediments and less than 12% within the upper slope sediments. A free gas zone beneath the GHSZ (10-20% gas saturation) is connected to the high free gas saturated (10-45%) area at the edge of the continental shelf, where most of the seeps are observed. This evidence supports the presence of lateral free gas migration beneath the GHSZ towards the continental shelf.