3 resultados para spatio-temporal correlation

em Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Adult anchovies in the Bay of Biscay perform north to south migration from late winter to early summer for spawning. However, what triggers and drives the geographic shift of the population remains unclear and poorly understood. An individual-based fish model has been implemented to explore the potential mechanisms that control anchovy's movement routes toward its spawning habitats. To achieve this goal, two fish movement behaviors – gradient detection through restricted area search and kinesis – simulated fish response to its dynamic environment. A bioenergetics model was used to represent individual growth and reproduction along the fish trajectory. The environmental forcing (food, temperature) of the model was provided by a coupled physical–biogeochemical model. We followed a hypothesis-testing strategy to actualize a series of simulations using different cues and computational assumptions. The gradient detection behavior was found as the most suitable mechanism to recreate the observed shift of anchovy distribution under the combined effect of sea-surface temperature and zooplankton. In addition, our results suggested that southward movement occurred more actively from early April to middle May following favorably the spatio-temporal evolution of zooplankton and temperature. In terms of fish bioenergetics, individuals who ended up in the southern part of the bay presented better condition based on energy content, proposing the resulting energy gain as an ecological explanation for this migration. The kinesis approach resulted in a moderate performance, producing distribution pattern with the highest spread. Finally, model performance was not significantly affected by changes on the starting date, initial fish distribution and number of particles used in the simulations, whereas it was drastically influenced by the adopted cues.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

European sea bass, Dicentrarchus labrax, is a highly valuable species in Europe, both for aquaculture in the Mediterranean Sea and for commercial and recreational fisheries in the North East Atlantic Ocean. Subjected to increasing fishing pressure, the wild population has recently experienced significant recruitment fluctuation as well as a northward extension of its distribution area in the North Sea. While the nature of the ecological and/or physiological processes involved remains unresolved, ontogenetic habitat shifts and adult site fidelity could increase the species’ vulnerability to climate change and overfishing. As managers look for expert information to propose management scenarios leading to sustainable exploitation, exploratory modelling appears to be a cost-efficient approach to enhance the understanding of recruitment dynamics and the spatio-temporal scales over which fish populations function. A conceptual modelling framework and its specific data requirements are discussed to tackle some sound ecological questions regarding this species. We consequently provide an updated review of current knowledge on bass population structure, biology and ecology. This paper will hence be particularly valuable to develop spatially-explicit models of European sea bass dynamics under environmental and anthropogenic forcing. Knowledge gaps requiring further research efforts are also reported.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dietary studies of marine species constitute an important key to improve the understanding of its biology and of its role in the ecosystem. Thus, prey-predator relationships structure and determine population dynamics and the trophic network at the ecosystem scale. Among the major study sites, the marine ecosystem is submitted to natural and anthropogenic constraints. In the North-Eastern part of the Atlantic Ocean, the Bay of Biscay is a large open area surrounded South by Spain and East by France. This bay is an historic place of intense fishery activities for which the main small pelagic species targeted are the pilchard, Sardina pilchardus and the anchovy, Engraulis encrasicolus. The aim of this work is to analyze the trophic ecology of these two small pelagic fish in spring in the Bay of Biscay. To do this, a first section is devoted to their prey composed by the mesozooplanktonic compartment, through a two-fold approach: the characterization of their spatio-temporal dynamics during the decade 2003-2013 and the measurement of their energetic content in spring. For this season, it appears that all prey types are not worth energetically and that the Bay of Biscay represents a mosaic of dietary habitat. Moreover, the spring mesozooplankton community presents a strong spatial structuration, a temporal evolution marked by a major change in abundance and a control by the microphytoplankton biomass. The second section of this work is relative to a methodological approach of the trophic ecology of S. pilchardus and E. encrasicolus. Three different trophic tracers have been used: isotopic ratios of carbon and nitrogen, parasitological fauna and mercury contamination levels. To improve the use of the first of these trophic tracers, an experimental approach has been conducted with S. pilchardus to determine a trophic discrimination factor. Finally, it appears that the use of these three trophic tracers has always been permitted to highlight a temporal variability of the relative trophic ecology of these fish. However, no spatial dynamics could be identified through these three trophic tracers.