2 resultados para sea salt
em Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer
Resumo:
In New Caledonia barren salt-pans located landward to mangroves are used for the construction of shrimp ponds. The existing farms are jeopardized by the projected rise in the sea level, because the landward boundaries of ponds are situated at the elevation reached by spring tides. One low-cost strategy for mitigating the effects of sea level rise is to raise the level of the bottom of ponds. To test the effectiveness of such an adaptation, we built 4 experimental ponds in the low-lying zone of an existing 10 ha shrimp pond. The level of the bottom of 2 ponds was raised by adding about 15 cm of agricultural soil. Placing agricultural soil in the pond did not impair the functioning of the shrimp pond ecosystem. On the contrary, it resulted in unexpectedly better shrimp production in the 2 ponds with agricultural soils versus control ponds. We conclude that placing a layer of soil inside shrimp ponds is a promising strategy for maintaining the viability of shrimp ponds as the sea level rises.
Resumo:
Observing, modelling and understanding the climate-scale variability of the deep water formation (DWF) in the North-Western Mediterranean Sea remains today very challenging. In this study, we first characterize the interannual variability of this phenomenon by a thorough reanalysis of observations in order to establish reference time series. These quantitative indicators include 31 observed years for the yearly maximum mixed layer depth over the period 1980–2013 and a detailed multi-indicator description of the period 2007–2013. Then a 1980–2013 hindcast simulation is performed with a fully-coupled regional climate system model including the high-resolution representation of the regional atmosphere, ocean, land-surface and rivers. The simulation reproduces quantitatively well the mean behaviour and the large interannual variability of the DWF phenomenon. The model shows convection deeper than 1000 m in 2/3 of the modelled winters, a mean DWF rate equal to 0.35 Sv with maximum values of 1.7 (resp. 1.6) Sv in 2013 (resp. 2005). Using the model results, the winter-integrated buoyancy loss over the Gulf of Lions is identified as the primary driving factor of the DWF interannual variability and explains, alone, around 50 % of its variance. It is itself explained by the occurrence of few stormy days during winter. At daily scale, the Atlantic ridge weather regime is identified as favourable to strong buoyancy losses and therefore DWF, whereas the positive phase of the North Atlantic oscillation is unfavourable. The driving role of the vertical stratification in autumn, a measure of the water column inhibition to mixing, has also been analyzed. Combining both driving factors allows to explain more than 70 % of the interannual variance of the phenomenon and in particular the occurrence of the five strongest convective years of the model (1981, 1999, 2005, 2009, 2013). The model simulates qualitatively well the trends in the deep waters (warming, saltening, increase in the dense water volume, increase in the bottom water density) despite an underestimation of the salinity and density trends. These deep trends come from a heat and salt accumulation during the 1980s and the 1990s in the surface and intermediate layers of the Gulf of Lions before being transferred stepwise towards the deep layers when very convective years occur in 1999 and later. The salinity increase in the near Atlantic Ocean surface layers seems to be the external forcing that finally leads to these deep trends. In the future, our results may allow to better understand the behaviour of the DWF phenomenon in Mediterranean Sea simulations in hindcast, forecast, reanalysis or future climate change scenario modes. The robustness of the obtained results must be however confirmed in multi-model studies.