5 resultados para scale effect
em Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer
Resumo:
Among bivalve species, the Pacific oyster, Crassostrea gigas, is the most economically important bivalve production over the world. Today, C. gigas is subject to an important production effort that leads to an intensive artificial selection. Larval stage is relatively unknown, specifically in a domestication context. Genetic consequence of artificial selection is still at a preliminary study. We aimed to tackle the consequence of inconscient domestication on the variance reproductive success focusing on larval stage, keystone of the life cycle. We studied two kinds of specific selective processes that common hatchery rearing practices exert : the effect of discarding the smallest larvae on genetic diversity and the artificial environment rearing effect via the temperature providing a contrast resembling wild versus hatchery conditions (20 and 26°C). In order to monitor the effect of the selection of fast growing larvae by sieving, growth variability and genetic diversity in a larval population descended from a factorial breeding was studied. We used a mixed-family approach to reduce potentially confounding environmental biais. The retrospective assignment of individuals to family groups has been performed using a three microsatellite markers set. Two different rearing were carried out in parallel. For three (replicates) 50-l tanks, the smallest larvae were progressively discarded by selective sieving, whereas for the three others no selective sieving was performed. The intensity of selective sieving was adjusted so as to discard 50% of the larvae over the whole rearing period in a progressive manner. As soon as the larvae reached the pediveliger stage, ready to settle larvae were sampled for genetic analysis. Regarding the artificial environment rearing effect via the temperature, we used a similar mixed-family approach. The progeny from a factorial breeding design was divided as follows: three (replicates) 50-l tanks were dedicaced to a rearing at 26°C versus 20°C for three others 50-l tanks. The whole size variability was preserved for this experiment. Individual growth measurements for larvae genetically identified have been performed at days 22 and 30 after fertilization for both conditions. In a same way, we collected individual measurements for genotyped juvenile oysters (80 days after fertilization). At a phenotypic scale, relative survival and settlement success for larvae with sieving were higher. Sieving appears as a time-saving process associated with a better relative survival ratio. But in the same time, our results confirm that a significant genetic variability exist for early developmental traits in the Pacific oyster. This is congruent with the results already obtained that investigated genetic variability and genetic correlations in early life-history traits of Crassostrea gigas. Discarding around 50% of the smallest larvae can lead to significant selection at the larval stage.
Resumo:
In order to optimize frontal detection in sea surface temperature fields at 4 km resolution, a combined statistical and expert-based approach is applied to test different spatial smoothing of the data prior to the detection process. Fronts are usually detected at 1 km resolution using the histogram-based, single image edge detection (SIED) algorithm developed by Cayula and Cornillon in 1992, with a standard preliminary smoothing using a median filter and a 3 × 3 pixel kernel. Here, detections are performed in three study regions (off Morocco, the Mozambique Channel, and north-western Australia) and across the Indian Ocean basin using the combination of multiple windows (CMW) method developed by Nieto, Demarcq and McClatchie in 2012 which improves on the original Cayula and Cornillon algorithm. Detections at 4 km and 1 km of resolution are compared. Fronts are divided in two intensity classes (“weak” and “strong”) according to their thermal gradient. A preliminary smoothing is applied prior to the detection using different convolutions: three type of filters (median, average and Gaussian) combined with four kernel sizes (3 × 3, 5 × 5, 7 × 7, and 9 × 9 pixels) and three detection window sizes (16 × 16, 24 × 24 and 32 × 32 pixels) to test the effect of these smoothing combinations on reducing the background noise of the data and therefore on improving the frontal detection. The performance of the combinations on 4 km data are evaluated using two criteria: detection efficiency and front length. We find that the optimal combination of preliminary smoothing parameters in enhancing detection efficiency and preserving front length includes a median filter, a 16 × 16 pixel window size, and a 5 × 5 pixel kernel for strong fronts and a 7 × 7 pixel kernel for weak fronts. Results show an improvement in detection performance (from largest to smallest window size) of 71% for strong fronts and 120% for weak fronts. Despite the small window used (16 × 16 pixels), the length of the fronts has been preserved relative to that found with 1 km data. This optimal preliminary smoothing and the CMW detection algorithm on 4 km sea surface temperature data are then used to describe the spatial distribution of the monthly frequencies of occurrence for both strong and weak fronts across the Indian Ocean basin. In general strong fronts are observed in coastal areas whereas weak fronts, with some seasonal exceptions, are mainly located in the open ocean. This study shows that adequate noise reduction done by a preliminary smoothing of the data considerably improves the frontal detection efficiency as well as the global quality of the results. Consequently, the use of 4 km data enables frontal detections similar to 1 km data (using a standard median 3 × 3 convolution) in terms of detectability, length and location. This method, using 4 km data is easily applicable to large regions or at the global scale with far less constraints of data manipulation and processing time relative to 1 km data.
Resumo:
Current dynamics in the Strait of Bonifacio (south Corsica) were investigated at a small scale during the STELLAMARE1 multidisciplinary cruise in summer 2012, using in situ measurements and modeling data. The Strait of Bonifacio is a particularly sensitive marine area in which specific conservation measures have been taken to preserve the natural environment and wild species. Good knowledge of the hydrodynamics in this area is essential to optimize the Marine Protected Area's management rules. Therefore, we used a high-resolution model (400 m) based on the MARS3D code to investigate the main flux exchanges and to formulate certain hypotheses about the formation of possible eddy structures. The aim of the present paper is first to synthetize the results obtained by combining Acoustic Doppler Current Profiler data, hydrological parameters, Lagrangian drifter data, and satellite observations such as MODIS OC5 chlorophyll a data or Metop-A AVHRR Sea Surface Temperature (SST) data. These elements are then used to validate the presence of the mesoscale eddies simulated by the model and their recurrence outside the cruise period. To complete the analysis, the response of the 3D hydrodynamical model was evaluated under two opposing wind systems and certain biases were detected. Strong velocities up to 1 m s(-1) were recorded in the east part due to the Venturi effect; a complementary system of vortices governed by Coriolis effect and west wind was observed in the west part, and horizontal stratification in the central part has been identified under typical wind condition.
Resumo:
Current coastal-evolution models generally lack the ability to accurately predict bed level change in shallow (<~2 m) water, which is, at least partly, due to the preclusion of the effect of surface-induced turbulence on sand suspension and transport. As a first step to remedy this situation, we investigated the vertical structure of turbulence in the surf and swash zone using measurements collected under random shoaling and plunging waves on a steep (initially 1:15) field-scale sandy laboratory beach. Seaward of the swash zone, turbulence was measured with a vertical array of three Acoustic Doppler Velocimeters (ADVs), while in the swash zone two vertically spaced acoustic doppler velocimeter profilers (Vectrino profilers) were applied. The vertical turbulence structure evolves from bottom-dominated to approximately vertically uniform with an increase in the fraction of breaking waves to ~ 50%. In the swash zone, the turbulence is predominantly bottom-induced during the backwash and shows a homogeneous turbulence profile during uprush. We further find that the instantaneous turbulence kinetic energy is phase-coupled with the short-wave orbital motion under the plunging breakers, with higher levels shortly after the reversal from offshore to onshore motion (i.e. wavefront).
Resumo:
The wave generation model based on the rapid distortion concept significantly underestimates empirical values of the wave growth rate. As suggested before, inclusion of the aerodynamic roughness modulations effect on the amplitude of the slope-correlated surface pressure could potentially reconcile this model approach with observations. This study explores the role of short-scale breaking modulations to amplify the growth rate of modulating longer waves. As developed, airflow separations from modulated breaking waves result in strong modulations of the turbulent stress in the inner region of the modulating waves. In turn, this leads to amplifying the slope-correlated surface pressure anomalies. As evaluated, such a mechanism can be very efficient for enhancing the wind-wave growth rate by a factor of 2-3.