6 resultados para north-western Spain
em Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer
Resumo:
Observing, modelling and understanding the climate-scale variability of the deep water formation (DWF) in the North-Western Mediterranean Sea remains today very challenging. In this study, we first characterize the interannual variability of this phenomenon by a thorough reanalysis of observations in order to establish reference time series. These quantitative indicators include 31 observed years for the yearly maximum mixed layer depth over the period 1980–2013 and a detailed multi-indicator description of the period 2007–2013. Then a 1980–2013 hindcast simulation is performed with a fully-coupled regional climate system model including the high-resolution representation of the regional atmosphere, ocean, land-surface and rivers. The simulation reproduces quantitatively well the mean behaviour and the large interannual variability of the DWF phenomenon. The model shows convection deeper than 1000 m in 2/3 of the modelled winters, a mean DWF rate equal to 0.35 Sv with maximum values of 1.7 (resp. 1.6) Sv in 2013 (resp. 2005). Using the model results, the winter-integrated buoyancy loss over the Gulf of Lions is identified as the primary driving factor of the DWF interannual variability and explains, alone, around 50 % of its variance. It is itself explained by the occurrence of few stormy days during winter. At daily scale, the Atlantic ridge weather regime is identified as favourable to strong buoyancy losses and therefore DWF, whereas the positive phase of the North Atlantic oscillation is unfavourable. The driving role of the vertical stratification in autumn, a measure of the water column inhibition to mixing, has also been analyzed. Combining both driving factors allows to explain more than 70 % of the interannual variance of the phenomenon and in particular the occurrence of the five strongest convective years of the model (1981, 1999, 2005, 2009, 2013). The model simulates qualitatively well the trends in the deep waters (warming, saltening, increase in the dense water volume, increase in the bottom water density) despite an underestimation of the salinity and density trends. These deep trends come from a heat and salt accumulation during the 1980s and the 1990s in the surface and intermediate layers of the Gulf of Lions before being transferred stepwise towards the deep layers when very convective years occur in 1999 and later. The salinity increase in the near Atlantic Ocean surface layers seems to be the external forcing that finally leads to these deep trends. In the future, our results may allow to better understand the behaviour of the DWF phenomenon in Mediterranean Sea simulations in hindcast, forecast, reanalysis or future climate change scenario modes. The robustness of the obtained results must be however confirmed in multi-model studies.
Resumo:
In order to optimize frontal detection in sea surface temperature fields at 4 km resolution, a combined statistical and expert-based approach is applied to test different spatial smoothing of the data prior to the detection process. Fronts are usually detected at 1 km resolution using the histogram-based, single image edge detection (SIED) algorithm developed by Cayula and Cornillon in 1992, with a standard preliminary smoothing using a median filter and a 3 × 3 pixel kernel. Here, detections are performed in three study regions (off Morocco, the Mozambique Channel, and north-western Australia) and across the Indian Ocean basin using the combination of multiple windows (CMW) method developed by Nieto, Demarcq and McClatchie in 2012 which improves on the original Cayula and Cornillon algorithm. Detections at 4 km and 1 km of resolution are compared. Fronts are divided in two intensity classes (“weak” and “strong”) according to their thermal gradient. A preliminary smoothing is applied prior to the detection using different convolutions: three type of filters (median, average and Gaussian) combined with four kernel sizes (3 × 3, 5 × 5, 7 × 7, and 9 × 9 pixels) and three detection window sizes (16 × 16, 24 × 24 and 32 × 32 pixels) to test the effect of these smoothing combinations on reducing the background noise of the data and therefore on improving the frontal detection. The performance of the combinations on 4 km data are evaluated using two criteria: detection efficiency and front length. We find that the optimal combination of preliminary smoothing parameters in enhancing detection efficiency and preserving front length includes a median filter, a 16 × 16 pixel window size, and a 5 × 5 pixel kernel for strong fronts and a 7 × 7 pixel kernel for weak fronts. Results show an improvement in detection performance (from largest to smallest window size) of 71% for strong fronts and 120% for weak fronts. Despite the small window used (16 × 16 pixels), the length of the fronts has been preserved relative to that found with 1 km data. This optimal preliminary smoothing and the CMW detection algorithm on 4 km sea surface temperature data are then used to describe the spatial distribution of the monthly frequencies of occurrence for both strong and weak fronts across the Indian Ocean basin. In general strong fronts are observed in coastal areas whereas weak fronts, with some seasonal exceptions, are mainly located in the open ocean. This study shows that adequate noise reduction done by a preliminary smoothing of the data considerably improves the frontal detection efficiency as well as the global quality of the results. Consequently, the use of 4 km data enables frontal detections similar to 1 km data (using a standard median 3 × 3 convolution) in terms of detectability, length and location. This method, using 4 km data is easily applicable to large regions or at the global scale with far less constraints of data manipulation and processing time relative to 1 km data.
Resumo:
Increasing abundance of non-commercial sprats and decreasing biomass and landings of commercial anchovies and sardines justify the need to study the feeding ecology and trophic niche overlap of these planktivorous species in the Gulf of Lions. Their diet has been investigated on the basis of stomach content and stable isotope analyses in 2011 and 2012 according to different depths and regions in the study area. The main prey were Corycaeidae copepods, Clauso/Paracalanus, Euterpina acutifrons and Microsetella, for sprats and small copepods, such as Microsetella, Oncaea and Corycaeidae, for anchovies and sardines. This is the first time that the diet of sprats is described in the Gulf of Lions. Sprats fed on a larger size spectrum of prey and seem to be more generalist feeders compared to anchovies and sardines. Ontogenetic changes as well as spatial and temporal variations of the diet occurred in the three species. Stable isotope analysis revealed mobility of sardines and sprats among feeding areas while anchovies exhibited preferred feeding areas. Sprats showed a higher relative condition assessed by C/N ratios than sardines and anchovies. Our results showed an overlap of the trophic niches for the three species, indicating a potential trophic competition in the Gulf of Lions.
Resumo:
Aim The spread of non-indigenous species in marine ecosystems world-wide is one of today's most serious environmental concerns. Using mechanistic modelling, we investigated how global change relates to the invasion of European coasts by a non-native marine invertebrate, the Pacific oyster Crassostrea gigas. Location Bourgneuf Bay on the French Atlantic coast was considered as the northern boundary of C. gigas expansion at the time of its introduction to Europe in the 1970s. From this latitudinal reference, variations in the spatial distribution of the C. gigas reproductive niche were analysed along the north-western European coast from Gibraltar to Norway. Methods The effects of environmental variations on C. gigas physiology and phenology were studied using a bioenergetics model based on Dynamic Energy Budget theory. The model was forced with environmental time series including in situ phytoplankton data, and satellite data of sea surface temperature and suspended particulate matter concentration. Results Simulation outputs were successfully validated against in situ oyster growth data. In Bourgneuf Bay, the rise in seawater temperature and phytoplankton concentration has increased C. gigas reproductive effort and led to precocious spawning periods since the 1960s. At the European scale, seawater temperature increase caused a drastic northward shift (1400 km within 30 years) in the C. gigas reproductive niche and optimal thermal conditions for early life stage development. Main conclusions We demonstrated that the poleward expansion of the invasive species C. gigas is related to global warming and increase in phytoplankton abundance. The combination of mechanistic bioenergetics modelling with in situ and satellite environmental data is a valuable framework for ecosystem studies. It offers a generic approach to analyse historical geographical shifts and to predict the biogeographical changes expected to occur in a climate-changing world.
Resumo:
Over the past several decades, thousands of otoliths, bivalve shells, and scales have been collected for the purposes of age determination and remain archived in European and North American fisheries laboratories. Advances in digital imaging and computer software combined with techniques developed by tree-ring scientists provide a means by which to extract additional levels of information in these calcified structures and generate annually resolved (one value per year), multidecadal time-series of population-level growth anomalies. Chemical and isotopic properties may also be extracted to provide additional information regarding the environmental conditions these organisms experienced.Given that they are exactly placed in time, chronologies can be directly compared to instrumental climate records, chronologies from other regions or species, or time-seriesof other biological phenomena. In this way, chronologies may be used to reconstruct historical ranges of environmental variability, identify climatic drivers of growth, establish linkages within and among species, and generate ecosystem-level indicators. Following the first workshop in Hamburg, Germany, in December 2014, the second workshop on Growth increment Chronologies in Marine Fish: climate-ecosystem interactions in the North Atlantic (WKGIC2) met at the Mediterranean Institute for Advanced Studies headquarters in Esporles, Spain, on 18–22 April 2016, chaired by Bryan Black (USA) and Christoph Stransky (Germany).Thirty-six participants from fifteen different countries attended. Objectives were to i) review the applications of chronologies developed from growth-increment widths in the hard parts (otoliths, shells, scales) of marine fish and bivalve species ii) review the fundamentals of crossdating and chronology development, iii) discuss assumptions and limitations of these approaches, iv) measure otolith growth-increment widths in image analysis software, v) learn software to statistically check increment dating accuracy, vi) generate a growth increment chronology and relate it to climate indices, and vii) initiate cooperative projects or training exercises to commence after the workshop.The workshop began with an overview of tree-ring techniques of chronology development, including a hands-on exercise in cross dating. Next, we discussed the applications of fish and bivalve biochronologies and the range of issues that could be addressed. We then reviewed key assumptions and limitations, especially those associated with short-lived species for which there are numerous and extensive otolith archives in European fisheries labs. Next, participants were provided with images of European plaice otoliths from the North Sea and taught to measure increment widths in image analysis software. Upon completion of measurements, techniques of chronology development were discussed and contrasted to those that have been applied for long-lived species. Plaice growth time-series were then related to environmental variability using the KNMI Climate Explorer. Finally, potential future collaborations and funding opportunities were discussed, and there was a clear desire to meet again to compare various statistical techniques for chronology development using a range existing fish, bivalve, and tree growth-increment datasets. Overall, we hope to increase the use of these techniques, and over the long term, develop networks of biochronologies for integrative analyses of ecosystem functioning and relationships to long-term climate variability and fishing pressure.