1 resultado para non-linear regression
em Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer
Filtro por publicador
- ABACUS. Repositorio de Producción Científica - Universidad Europea (1)
- Aberystwyth University Repository - Reino Unido (1)
- Academic Research Repository at Institute of Developing Economies (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (4)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (5)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (5)
- Aquatic Commons (3)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (1)
- Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer (1)
- Archive of European Integration (1)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (4)
- Aston University Research Archive (44)
- B-Digital - Universidade Fernando Pessoa - Portugal (1)
- Biblioteca de Teses e Dissertações da USP (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (9)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (11)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (11)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (18)
- Boston University Digital Common (6)
- Brock University, Canada (3)
- Bulgarian Digital Mathematics Library at IMI-BAS (7)
- CaltechTHESIS (3)
- Cambridge University Engineering Department Publications Database (95)
- CentAUR: Central Archive University of Reading - UK (63)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (17)
- Cochin University of Science & Technology (CUSAT), India (10)
- Collection Of Biostatistics Research Archive (2)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (1)
- CORA - Cork Open Research Archive - University College Cork - Ireland (1)
- Dalarna University College Electronic Archive (1)
- Digital Commons - Michigan Tech (2)
- Digital Commons - Montana Tech (1)
- Digital Commons @ DU | University of Denver Research (1)
- Digital Commons at Florida International University (8)
- Digital Knowledge Repository of Central Drug Research Institute (1)
- DigitalCommons - The University of Maine Research (1)
- DigitalCommons@The Texas Medical Center (2)
- DRUM (Digital Repository at the University of Maryland) (1)
- Duke University (2)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (5)
- eScholarship Repository - University of California (1)
- Greenwich Academic Literature Archive - UK (8)
- Helda - Digital Repository of University of Helsinki (6)
- Indian Institute of Science - Bangalore - Índia (99)
- Instituto de Engenharia Nuclear, Brazil - Carpe dIEN (1)
- Instituto Politécnico do Porto, Portugal (10)
- Instituto Superior de Psicologia Aplicada - Lisboa (1)
- Laboratório Nacional de Energia e Geologia - Portugal (1)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (1)
- Massachusetts Institute of Technology (1)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (2)
- Portal de Revistas Científicas Complutenses - Espanha (1)
- Publishing Network for Geoscientific & Environmental Data (1)
- QSpace: Queen's University - Canada (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (60)
- Queensland University of Technology - ePrints Archive (88)
- Repositório Científico da Universidade de Évora - Portugal (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (4)
- Repositório Institucional da Universidade de Aveiro - Portugal (3)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (117)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (1)
- SAPIENTIA - Universidade do Algarve - Portugal (6)
- Universidad de Alicante (1)
- Universidad del Rosario, Colombia (5)
- Universidad Politécnica de Madrid (21)
- Universidade Complutense de Madrid (1)
- Universidade Federal do Pará (4)
- Universidade Federal do Rio Grande do Norte (UFRN) (15)
- Universitat de Girona, Spain (3)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (4)
- Université de Lausanne, Switzerland (7)
- Université de Montréal, Canada (29)
- University of Connecticut - USA (1)
- University of Michigan (7)
- University of Queensland eSpace - Australia (9)
- University of Southampton, United Kingdom (1)
- University of Washington (1)
- WestminsterResearch - UK (3)
Resumo:
Classical regression analysis can be used to model time series. However, the assumption that model parameters are constant over time is not necessarily adapted to the data. In phytoplankton ecology, the relevance of time-varying parameter values has been shown using a dynamic linear regression model (DLRM). DLRMs, belonging to the class of Bayesian dynamic models, assume the existence of a non-observable time series of model parameters, which are estimated on-line, i.e. after each observation. The aim of this paper was to show how DLRM results could be used to explain variation of a time series of phytoplankton abundance. We applied DLRM to daily concentrations of Dinophysis cf. acuminata, determined in Antifer harbour (French coast of the English Channel), along with physical and chemical covariates (e.g. wind velocity, nutrient concentrations). A single model was built using 1989 and 1990 data, and then applied separately to each year. Equivalent static regression models were investigated for the purpose of comparison. Results showed that most of the Dinophysis cf. acuminata concentration variability was explained by the configuration of the sampling site, the wind regime and tide residual flow. Moreover, the relationships of these factors with the concentration of the microalga varied with time, a fact that could not be detected with static regression. Application of dynamic models to phytoplankton time series, especially in a monitoring context, is discussed.