2 resultados para non-destructive reconstruction

em Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer


Relevância:

80.00% 80.00%

Publicador:

Resumo:

A lean muscle line (L) and a fat muscle line (F) of rainbow trout were established (Quillet et al., 2005) by a two-way selection for muscle lipid content performed on pan-size rainbow trout using a non-destructive measurement of muscle lipid content (Distell Fish Fat Meter®). The aim of the present study was to evaluate the consequences of this selective breeding on flesh quality of pan size (290 g) diploid and triploid trout after three generations of selection. Instrumental evaluations of fillet color and pH measurement were performed at slaughter. Flesh color, pH, dry matter content and mechanical resistance were measured at 48 h and 96 h postmortem on raw and cooked flesh, respectively. A sensorial profile analysis was performed on cooked fillets. Fillets from the selected fatty muscle line (F) had a higher dry matter content and were more colorful for both raw and cooked fillets. Mechanical evaluation indicated a tendency of raw flesh from F fish to be less firm, but this was not confirmed after cooking, neither instrumentally or by sensory analysis. The sensory analysis revealed higher fat loss, higher intensity of flavor of cooked potato, higher exudation, higher moisture content and a more fatty film left on the tongue for flesh from F fish. Triploid fish had mechanically softer raw and cooked fillets, but the difference was not perceived by the sensorial panel. The sensorial evaluation also revealed a lower global intensity of odor, more exudation and a higher moisture content in the fillets from triploid fish. These differences in quality parameters among groups of fish were associated with larger white muscle fibers in F fish and in triploid fish. The data provide additional information about the relationship between muscle fat content, muscle cellularity and flesh quality.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Important historical informations on the temporal changes of anthropogenic pollution in marine environment can be assessed using sediment analysis. Dating is a crucial prerequisite to reconstruct pollution events, to calculate fluxes, and thus to allow comparison between different sites. This work presents estimates of accumulation rates of sediments in the Bay of Biscay. Fives cores were collected during RIKEAU 2002 cruise on board o/v Thalia in order to study temporal changes in PAH and organohalogens compounds content of sediment. We compare chronostratigraphic estimates on cores derived from the natural radionuclide 210Pb in excess with estimates from the known times of introduction of the artificial radionuclide 137Cs to the environment. 210Pb, 226Ra and 137Cs were measured directly by non-destructive gamma spectrometry using a well type γ-detector. Total 210Pb and 226Ra activities vary from 30 to 150 mBq g-1, and 20 to 36 mBq g-1 respectively; 137Cs presents lower levels (< 5 mBq g-1). Profiles of 210Pb in three cores present a well mixed layer, from 2-3 to 10 cm, in the uppermost sediments, followed by an exponential decrease of activities, suitable for the determination of sedimentation rates. Under constant flux and sedimentation rate assumptions, vertical accretion rates derived from 210Pb present a large range from nearly 0.1 cm yr-1 up to almost 0.3 cm yr-1. Differences are mainly due to relative position of studied cores regarding the muddy patch. Although the moderate level of 137Cs limits the accuracy of this dating method, profiles of 137Cs with depth strengthen mean rates derived from 210Pb data. The implication of this dating on pollutant inputs in sediments of the Bay of Biscay is briefly discussed.