5 resultados para mid ocean ridges

em Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We analyze available heat flow data from the flanks of the Southeast Indian Ridge adjacent to or within the Australian-Antarctic Discordance (AAD), an area with patchy sediment cover and highly fractured seafloor as dissected by ridge- and fracture-parallel faults. The data set includes 23 new data points collected along a 14-Ma old isochron and 19 existing measurements from the 20- to 24-Ma old crust. Most sites of measurements exhibit low heat flux (from 2 to 50 mW m(-2)) with near-linear temperature-depth profiles except at a few sites, where recent bottom water temperature change may have caused nonlinearity toward the sediment surface. Because the igneous basement is expected to outcrop a short distance away from any measurement site, we hypothesize that horizontally channelized water circulation within the uppermost crust is the primary process for the widespread low heat flow values. The process may be further influenced by vertical fluid flow along numerous fault zones that crisscross the AAD seafloor. Systematic measurements along and across the fault zones of interest as well as seismic profiling for sediment distribution are required to confirm this possible, suspected effect.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The temperature of the mantle and the rate of melt production are parameters which play important roles in controlling the style of crustal accretion along mid-ocean ridges. To investigate the variability in crustal accretion that develops in response to variations in mantle temperature, we have conducted a geophysical investigation of the Southeast Indian Ridge (SEIR) between the Amsterdam hotspot and the Australian-Antarctic Discordance (88 degrees E-118 degrees E). The spreading center deepens by 2100 m from west to east within the study area. Despite a uniform, intermediate spreading rate (69-75 mm yr-l), the SEIR exhibits the range in axial morphology displayed by the East Pacific Rise and the Mid-Atlantic Ridge (MAR) and usually associated with variations in spreading rate. The spreading center is characterized by an axial high west of 102 degrees 45'E, whereas an axial valley is prevalent east of this longitude. Both the deepening of the ridge axis and the general evolution of axial morphology from an axial high to a rift valley are not uniform. A region of intermediate morphology separates axial highs and MAR-like rift valleys. Local transitions in axial morphology occur in three areas along the ridge axis. The increase in axial depth toward the Australian-Antarctic Discordance may be explained by the thinning of the oceanic crust by similar to 4 km and the change in axial topography. The long-wavelength changes observed along the SEIR can be attributed to a gradient in mantle temperature between regions influenced by the Amsterdam and Kerguelen hot spots and the Australian-Antarctic Discordance. However, local processes, perhaps associated with an heterogeneous mantle or along-axis asthenospheric flow, may give rise to local transitions in axial topography and depth anomalies.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We have reviewed available visual information from the seafloor, and recently acquired microbathymetry for several traverses across the Lucky Strike segment, to evaluate the distribution of hydrothermal activity. We have identified a new on-axis site with diffuse flow, Ewan, and an active vent structure ∼1.2 km from the axis, Capelinhos. These sites are minor relative to the Main field, and our total heatflux estimate for all active sites (200–1200 MW) is only slightly higher than previously published estimates. We also identify fossil sites W of the main Lucky Strike field. A circular feature ∼200 m in diameter located on the flanks of a rifted off-axis central volcano is likely a large and inactive hydrothermal edifice, named Grunnus. We find no indicator of focused hydrothermal activity elsewhere along the segment, suggesting that the enhanced melt supply and the associated melt lenses, required to form central volcanoes, also sustain hydrothermal circulation to form and maintain large and long-lived hydrothermal fields. Hydrothermal discharge to the seafloor occurs along fault traces, suggesting focusing of hydrothermal circulation in the shallow crust along permeable fault zones.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

An inactive vent field comprised of dead chimneys was discovered on the ultrafast East Pacific Rise (EPR) at 18°S during the research campaign NAUDUR with the R/V Le Nadir in December 1993. One of these chimneys was sampled, studied and found to be largely composed of silica-mineralized bacterial-like filaments. The filaments are inferred to be the result of microbial activity leading to silica (± Fe-oxyhydroxide) precipitation. The chimney grew from the most external layer (precipitated 226 ± 4 yr. B.P.) towards the central chimney conduit. Hydrothermal activity ceased 154 ± 13 yr. B.P. and the chimney conduit was completely sealed. Mixing between an end-member hydrothermal fluid and seawater explains the Sr–Nd isotopic composition of the chimney. Seawater was the major source of Sr to the chimney, whereas the dominant Nd source was the local mid-ocean ridge basalt (MORB) leached by the hydrothermal fluids. The mixing scenarios point to a dynamic hydrothermal system with fluctuating fluid compositions. The proportion of seawater within the venting fluid responsible for the precipitation of the silica chimney layers varied between 94 and 85%. Pb-isotope data indicates that all of the Pb in the chimney was derived from the underlying MORB. The precipitation temperatures of the chimney layers varied between 55 and 71 °C, and were a function of the seawater/end-member hydrothermal fluid mixing ratio. δ30Si correlates with the temperature of precipitation implying that temperature is one of the major controls of the Si-isotope composition of the chimney. Concentrations of elements across the chimney wall were a function of this mixing ratio and the composition of the end-member hydrothermal fluid. The inward growth of the chimney wall and accompanying decrease in wall permeability resulted in an inward decrease in the seawater/hydrothermal fluid mixing ratio, which in turn exerted a control on the concentrations of the elements supplied mainly by the hydrothermal fluids. The silica chimney is significantly enriched in U, likely a result of bacterial concentration of U from the seawater-dominated vent fluid. The chimney is poor in rare earth elements (REE). It inherited its REE distribution patterns from the parent end-member hydrothermal fluids. The dilution of the hydrothermal fluid with over 85% seawater could not obliterate the particular REE features (positive Eu anomaly) of the hydrothermal fluids.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The aim of this study is to clarify the role of the Southern Ocean storms on interior mixing and meridional overturning circulation. A periodic and idealized numerical model has been designed to represent the key physical processes of a zonal portion of the Southern Ocean located between 70 and 40° S. It incorporates physical ingredients deemed essential for Southern Ocean functioning: rough topography, seasonally varying air–sea fluxes, and high-latitude storms with analytical form. The forcing strategy ensures that the time mean wind stress is the same between the different simulations, so the effect of the storms on the mean wind stress and resulting impacts on the Southern Ocean dynamics are not considered in this study. Level and distribution of mixing attributable to high-frequency winds are quantified and compared to those generated by eddy–topography interactions and dissipation of the balanced flow. Results suggest that (1) the synoptic atmospheric variability alone can generate the levels of mid-depth dissipation frequently observed in the Southern Ocean (10−10–10−9 W kg−1) and (2) the storms strengthen the overturning, primarily through enhanced mixing in the upper 300 m, whereas deeper mixing has a minor effect. The sensitivity of the results to horizontal resolution (20, 5, 2 and 1 km), vertical resolution and numerical choices is evaluated. Challenging issues concerning how numerical models are able to represent interior mixing forced by high-frequency winds are exposed and discussed, particularly in the context of the overturning circulation. Overall, submesoscale-permitting ocean modeling exhibits important delicacies owing to a lack of convergence of key components of its energetics even when reaching Δx =  1 km.