3 resultados para macroalgae beds

em Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study presents an assessment of the contributions of various primary producers to the global annual production and N/P cycles of a coastal system, namely the Arcachon Bay, by means of a numerical model. This 3D model fully couples hydrodynamic with ecological processes and simulates nitrogen, silicon and phosphorus cycles as well as phytoplankton, macroalgae and seagrasses. Total annual production rates for the different components were calculated for different years (2005, 2007 and 2009) during a time period of drastic reduction in seagrass beds since 2005. The total demand of nitrogen and phosphorus was also calculated and discussed with regards to the riverine inputs. Moreover, this study presents the first estimation of particulate organic carbon export to the adjacent open ocean. The calculated annual net production for the Arcachon Bay (except microphytobenthos, not included in the model) ranges between 22,850 and 35,300 tons of carbon. The main producers are seagrasses in all the years considered with a contribution ranging from 56% to 81% of global production. According to our model, the -30% reduction in seagrass bed surface between 2005 and 2007, led to an approximate 55% reduction in seagrass production, while during the same period of time, macroalgae and phytoplankton enhanced their productions by about +83% and +46% respectively. Nonetheless, the phytoplankton production remains about eightfold higher than the macroalgae production. Our results also highlight the importance of remineralisation inside the Bay, since riverine inputs only fulfill at maximum 73% nitrogen and 13% phosphorus demands during the years 2005, 2007 and 2009. Calculated advection allowed a rough estimate of the organic matter export: about 10% of the total production in the bay was exported, originating mainly from the seagrass compartment, since most of the labile organic matter was remineralised inside the bay.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Water Framework Directive uses the “One-out, all-out” (OAOO) principle in assessing water bodies (i.e. the worst status of the elements used in the assessment determines the final status of the water body). Combination of multiple parameters within a biological quality element (BQEs) can be done in different ways. This study analysed several aggregation conditions within the BQE "Flora other than phytoplankton" (intertidal macroalgae, subtidal macroalgae, eelgrass beds and opportunistic blooms) using monitoring data collected along the Channel and Atlantic coastline. Four aggregation criteria were tested on two sets of data collected between 2004 and 2014: OOAO, average, intermediate method between OOAO and average and a method taking into account an uncertainty value at the threshold "Good/Moderate." Based on available data, the intermediate method appears the most qualified method using first an averaging approach between the natural habitat elements and then applying the OAOO between this mean and the opportunistic blooms, characteristic of an eutrophic environment. Expert judment might be used to ensure in the overall interpretation of results at waterbody level and in the classification outcomes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of surfactants to improve enzymatic hydrolysis of the macroalgae Sargassum muticum has been investigated. Visible absorption spectroscopy has been used to quantify the solubilization of both polysaccharides and phlorotannins in the hydrolysates.   After total extraction, results showed that Sargassum muticum contained 2.74% (expressed in percent of the dry weight of the algae) of phlorotannins whose 32 % were in the cell wall. This result shows that it is important to access to the parietal phlorotannins. To reach this objective, we chose the enzymatic approach for destructurating the cell wall of the algae. The use of 5% dry weight (DW - 5% by weight of hydrolyzed algae) of an enzymatic mix containing a commercial beta-glucanase, a commercial protease and an alginate lyase extracted from Pseudomonas alginovora led after 3 hours of hydrolysis to the solubilization of 2.43% DW polysaccharides and 0.52% DW phlorotannins. The use of 0.5% volume of the surfactant Triton® X-100 with 10% DW of the enzymatic mix has allowed to reaching the value of 2.63% DW of solubilized phlorotannins, that is 96% of the total phenolic content.   The use of non-ionic surfactant, combined to enzymatic hydrolysis, showed an increased efficiency in disrupting cell wall and solubilizing phlorotannins in Sargassum muticum.