2 resultados para limiting moments and correlation
em Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer
Resumo:
In May, June and July 1996, samples wcre collected along one transect greatly influenced by river discharge (eastern side of the gulf), along one transect slightly influence by river discharge (western side), at one station Iocated in the mouth of the main river (River Daugava), at one station located in the center of the Gulf and at several nearshore locations of the western side. Ratios of rnolecular concentrations of in situ dissolved ioorganic nitrogen, phosphorus and silicon, as weIl as enrichment bioassays were llsed to dctcrrnine which nutrient (s) lirnited the potential biomass of phytoplankton. Both comparison of (NO.d-N02+NJ.L): P04 (DIN: DIP) values with Redfic1d's ratio and bioassay inspection led to the sarne conclusions. Phosphorus was clearly the nutrient most limiting for the potcntial biornass of test species in nitrogen- rich waters, which occurred in mid spring, in the upper layer of the southern-eastern part of the Gulf which is greatly influenced by river discharge. In late spring, with the decrease of the total DIN reserve, nitrogen and phosphorus showed an equallimiting role. In deeper layers of this area and out of the river plume (western side and central part of the gulf), nitrogen was the limiting nutrient. In summer, whcn river discharge was the lowest, a11 DIN concentrations but one ranged between 1.6 and 2.6 µM, and the whole area was nitrogen-limited for both the cyanobacterial and the algal test strains. In 74% of the samples for which nitrogen was the limiting nutrient, phosphorus was recorded to be the second potentially limiting nutrient. In contrast, silicon never appeared as limiting the growth potential of either Microcystis aeruginosa or Phaeodactylum tricornutum; phosphorus was the limiting nutrient when DIN: Si03 values were >1 (in May), but DIN: Si03 was <1 when nitrogen was limiting (June and July). The authors conclude that the recently reported decrease of silicon loading in coastal waters and its subsequent enhanced importance in pushing the outcome of species competition towards harmful species may not yet be the most important factor for the Gulf of Riga. Iron appeared for 12% of the tests in the list of nutrients limiting the potential biomass. Tentative results also indicated that a significant fraction of the nitrogen (~,4 µg-atom N 1(-1) taken up by Microcystis aeruginosa may have been in the form of dissolved organic nitrogen (DON). It is thus also suggested tentatively that more attention be paid to these nitrients during further research in the Gulf of Riga.
Resumo:
Recent developments in the physical parameterizations available in spectral wave models have already been validated, but there is little information on their relative performance especially with focus on the higher order spectral moments and wave partitions. This study concentrates on documenting their strengths and limitations using satellite measurements, buoy spectra, and a comparison between the different models. It is confirmed that all models perform well in terms of significant wave heights; however higher-order moments have larger errors. The partition wave quantities perform well in terms of direction and frequency but the magnitude and directional spread typically have larger discrepancies. The high-frequency tail is examined through the mean square slope using satellites and buoys. From this analysis it is clear that some models behave better than the others, suggesting their parameterizations match the physical processes reasonably well. However none of the models are entirely satisfactory, pointing to poorly constrained parameterizations or missing physical processes. The major space-time differences between the models are related to the swell field stressing the importance of describing its evolution. An example swell field confirms the wave heights can be notably different between model configurations while the directional distributions remain similar. It is clear that all models have difficulty in describing the directional spread. Therefore, knowledge of the source term directional distributions is paramount in improving the wave model physics in the future.