2 resultados para high velocity power training

em Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work presents the analysis of wave and turbulence measurements collected at a tidal energy site. A new method is introduced to produce more consistent and rigorous estimations of the velocity fluctuations power spectral densities. An analytical function is further proposed to fit the observed spectra and could be input to the numerical models predicting power production and structural loading on tidal turbines. Another new approach is developed to correct for the effect of the Doppler noise on the high frequencies power spectral densities. The analysis of velocity time series combining wave and turbulent contributions demonstrates that the turbulent motions are coherent throughout the water column, rendering the wave coherence-based methods not applicable to our dataset. To avoid this problem, an alternative approach relying on the pressure data collected by the ADCP is introduced and shows appreciable improvement in the wave-turbulence separation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We acquired coincident marine controlled-source electromagnetic (CSEM), high-resolution seismic reflection and ocean-bottom seismometer (OBS) data over an active pockmark in the crest of the southern part of the Vestnesa Ridge, to estimate fluid composition within an underlying fluid-migration chimney. Synthetic model studies suggest resistivity obtained from CSEM data can resolve gas or hydrate saturation greater than 5% within the chimney. Acoustic chimneys imaged by seismic reflection data beneath the pockmark and on the ridge flanks, were found to be associated with high-resistivity anomalies (+2-4 m). High-velocity anomalies (+0.3 km/s), within the gas hydrate stability zone (GHSZ) and low-velocity anomalies (-0.2 km/s) underlying the GHSZ, were also observed. Joint analysis of the resistivity and velocity anomaly indicates pore saturation of up to 52% hydrate with 28% free gas, or up to 73% hydrate with 4% free gas, within the chimney beneath the pockmark assuming a non-uniform and uniform fluid distribution respectively. Similarly, we estimate up to 30% hydrate with 4% free gas or 30% hydrate with 2% free gas within the pore space of the GHSZ outside the central chimney assuming a non-uniform and uniform fluid distribution respectively. High levels of free-gas saturation in the top part of the chimney are consistent with episodic gas venting from the pockmark.