6 resultados para food sources

em Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The aim of this study was to assess the relative contribution of natural productivity and compound food to the growth of the juvenile blue shrimp Litopenaeus stylirostris reared in a biofloc system. Two experiments were carried out based on the same protocol with three treatments: clear water with experimental diet (CW), biofloc with experimental diet (BF) and biofloc unfed (BU). Shrimp survival was significantly higher in biofloc rearing than in CW rearing. The contribution of the biofloc to shrimp diet was estimated through measurement of carbon and nitrogen stable isotope ratios in shrimp and food sources. Different isotopic compositions between feeds were obtained by feeding natural productivity with a mixture rich in fish meal and the shrimps with a pellet containing a high level of soy protein concentrate. Using a two source one-isotope mixing model, we found that the natural productivity of the biofloc system contributed to shrimp growth at a level of 39.8% and 36.9%, for C and N, respectively. The natural food consumed by the shrimps reared in the biofloc system resulted in higher gene expression (mRNA transcript abundance) and activities of two digestive enzymes in their digestive gland: α-amylase and trypsin. The growth of shrimp biomass reared in biofloc was, on average, 4.4 times that of those grown in clear water. Our results confirmed the best survival and promoted growth of shrimps using biofloc technology and highlighted the key role of the biofloc in the nutrition of rearing shrimps. Statement of relevance In this study, we have applied an original protocol to determine the respective contribution of natural productivity and artificial feeds on the alimentation of the juvenile blue shrimp L. stylirostris reared in biofloc system by using C and N natural stable isotope analysis. Moreover, we have compared, in shrimp digestive gland, the α-amylase and trypsin enzyme activities at biochemical and molecular levels for two different shrimp rearing systems, biofloc and clear water. In our knowledge, the use of molecular tool to study the influence of biofloc consumption on digest process of shrimp was never carried out. We think that our research is new and important to increase knowledge on biofloc topic.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Anthropogenic activities and land-based inputs into the sea may influence the trophic structure and functioning of coastal and continental shelf ecosystems, despite the numerous opportunities and services the latter offer to humans and wildlife. In addition, hydrological structures and physical dynamics potentially influence the sources of organic matter (e.g., terrestrial versus marine, or fresh material versus detrital material) entering marine food webs. Understanding the significance of the processes that influence marine food webs and ecosystems (e.g., terrestrial inputs, physical dynamics) is crucially important because trophic dynamics are a vital part of ecosystem integrity. This can be achieved by identifying organic matter sources that enter food webs along inshore–offshore transects. We hypothesised that regional hydrological structures over wide continental shelves directly control the benthic trophic functioning across the shelf. We investigated this issue along two transects in the northern ecosystem of the Bay of Biscay (north-eastern Atlantic). Carbon and nitrogen stable isotope analysis (SIA) and fatty acid analysis (FAA) were conducted on different complementary ecosystem compartments that include suspended particulate organic matter (POM), sedimentary organic matter (SOM), and benthic consumers such as bivalves, large crustaceans and demersal fish. Samples were collected from inshore shallow waters (at ∼1 m in depth) to more than 200 m in depth on the offshore shelf break. Results indicated strong discrepancies in stable isotope (SI) and fatty acid (FA) compositions in the sampled compartments between inshore and offshore areas, although nitrogen SI (δ15N) and FA trends were similar along both transects. Offshore the influence of a permanently stratified area (described previously as a “cold pool”) was evident in both transects. The influence of this hydrological structure on benthic trophic functioning (i.e., on the food sources available for consumers) was especially apparent across the northern transect, due to unusual carbon isotope compositions (δ13C) in the compartments. At stations under the cold pool, SI and FA organism compositions indicated benthic trophic functioning based on a microbial food web, including a significant contribution of heterotrophic planktonic organisms and/or of SOM, notably in stations under the cold pool. On the contrary, inshore and shelf break areas were characterised by a microalgae-based food web (at least in part for the shelf break area, due to slope current and upwelling that can favour fresh primary production sinking on site). SIA and FAA were relevant and complementary tools, and consumers better medium- to long-term system integrators than POM samples, for depicting the trophic functioning and dynamics along inshore–offshore transects over continental shelves.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A spatially explicit coupled hydrodynamic-biogeochemical model was developed to study a coastal ecosystem under the combined effects of mussel aquaculture, nutrient loading and climate change. The model was applied to St Peter's Bay (SPB), Prince Edward Island, Eastern Canada. Approximately 40 % of the SPB area is dedicated to mussel (Mytilus edulis) longline culture. Results indicate that the two main food sources for mussels, phytoplankton and organic detritus, are most depleted in the central part of the embayment. Results also suggest that the system is near its ultimate capacity, a state where the energy cycle is restricted to nitrogen-phytoplankton-detritus-mussels with few resources left to be transferred to higher trophic levels. Annually, mussel meat harvesting extracts nitrogen (N) resources equivalent to 42 % of river inputs or 46.5 % of the net phytoplankton primary production. Under such extractive pressure, the phytoplankton biomass is being curtailed to 1980's levels when aquaculture was not yet developed and N loading was half the present level. Current mussel stocks also decrease bay-scale sedimentation rates by 14 %. Finally, a climate change scenario (year 2050) predicted a 30 % increase in mussel production, largely driven by more efficient utilization of the phytoplankton spring bloom. However, the predicted elevated summer temperatures (> 25 A degrees C) may also have deleterious physiological effects on mussels and possibly increase summer mortality levels. In conclusion, cultivated bivalves may play an important role in remediating the negative impacts of land-derived nutrient loading. Climate change may lead to increases in production and ecological carrying capacity as long as the cultivated species can tolerate warmer summer conditions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The linked concepts of 'microbial loop' and 'protozoan trophic link' have been very well documented in filter-feeding microzooplankton such as copepods, but have not been applied to energy transfer to benthic suspension-feeding macrofauna, with the exception of the recent demonstration of heterotrophic flagellate assimilation by mussels. The oyster Crassostrea gigas obtains energy resources by filtering microalgae (similar to 5 to 100 mu m). However, in turbid estuaries, light-limited phytoplanktonic production cannot entirely account for oyster energy requirements. Conversely, picoplankters (<2 mu m), which are main effecters of coastal energy flow and matter cycling, are not efficiently retained by oyster filtration. Ciliate protozoal as both micro-sized cells (similar to 5 to 100 run) and bacteria grazers, may represent a major intermediary in trophic transfer between picoplankton and metazoa. The ciliate Uronema was intensely cultured and labelled, using the cyanobacteria Synechococcus as an auto-fluorescent biomarker. The labelled ciliates were offered as potential prey to oysters. We report here the first experimental evidence of a significant retention and ingestion of ciliates by oysters, supporting the role of protozoa as a realistic trophic link between picoplankters and filter-feeding bivalves and thus enhancing their potential importance in estuarine microbial food webs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Otoliths are calcified structures located in Osteichthyes’ inner ear that are involved in audition and balance. Their morphology is used as an indicator of various ecological processes or properties. This application requires identifying the endogenous and exogenous factors that act simultaneously as sources of shape variation. This thesis aims at detecting and quantifying the relative contributions of directional asymmetry and diet to otolith shape variation at the intra-population level. Directional asymmetry between left and right otoliths was found in flat-fishes, the blind-side otolith being always longer and larger, whereas it was negligible in round-fishes. However, asymmetry amplitude never exceeded 18 %, which suggests evolutionary canalization of otolith shape symmetry. A correlation between global diet and otolith was detected in 4 species studied in situ. Diet composition contributed more than food amount to morphological variation and affected otolith shape both globally and locally. An experimental study on sea bass (Dicentrarchus larbrax) showed that diet composition in terms of essential polyunsaturated fatty acids at larval stage affects otolith morphogenesis during juvenile stage without impacting on individuals’ somatic growth. This result suggests a direct effect of diet on otolith shape and not an indirect one through the somatic-otolith growth relationship. This effect disappeared at later stages, morphogenetic trajectories converging back to a similar shape, which suggests ontogenetic canalization of otolith shape.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the Guaymas Basin, the presence of cold seeps and hydrothermal vents in close proximity, similar sedimentary settings and comparable depths offers a unique opportunity to assess and compare the functioning of these deep-sea chemosynthetic ecosystems. The food webs of five seep and four vent assemblages were studied using stable carbon and nitrogen isotope analyses. Although the two ecosystems shared similar potential basal sources, their food webs differed: seeps relied predominantly on methanotrophy and thiotrophy via the Calvin-Benson-Bassham (CBB) cycle and vents on petroleum-derived organic matter and thiotrophy via the CBB and reductive tricarboxylic acid (rTCA) cycles. In contrast to symbiotic species, the heterotrophic fauna exhibited high trophic flexibility among assemblages, suggesting weak trophic links to the metabolic diversity of chemosynthetic primary producers. At both ecosystems, food webs did not appear to be organised through predator-prey links but rather through weak trophic relationships among co-occurring species. Examples of trophic or spatial niche differentiation highlighted the importance of species-sorting processes within chemosynthetic ecosystems. Variability in food web structure, addressed through Bayesian metrics, revealed consistent trends across ecosystems. Food-web complexity significantly decreased with increasing methane concentrations, a common proxy for the intensity of seep and vent fluid fluxes. Although high fluid-fluxes have the potential to enhance primary productivity, they generate environmental constraints that may limit microbial diversity, colonisation of consumers and the structuring role of competitive interactions, leading to an overall reduction of food-web complexity and an increase in trophic redundancy. Heterogeneity provided by foundation species was identified as an additional structuring factor. According to their biological activities, foundation species may have the potential to partly release the competitive pressure within communities of low fluid-flux habitats. Finally, ecosystem functioning in vents and seeps was highly similar despite environmental differences (e.g. physico-chemistry, dominant basal sources) suggesting that ecological niches are not specifically linked to the nature of fluids. This comparison of seep and vent functioning in the Guaymas basin thus provides further supports to the hypothesis of continuity among deep-sea chemosynthetic ecosystems.