4 resultados para flat starts
em Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer
Resumo:
The protozoan parasite Marteilia refringens has been partly responsible for the severe decrease in the production of the European flat oyster Ostrea edulis Linnaeus in France since the 1970s. The calanoid copepod Paracartia grani Sars was recently found to be a host for M refringens in French shallow-water oyster ponds ('claires'). This study reconsidered M refringens transmission dynamics in the light of this finding, taking into account not only oyster infection dynamics and environmental factors but also data concerning the copepod host. P. grani population dynamics in the claire under study revealed that this species is the dominant planktonic copepod in this confined ecosystem. During winter, M refringens overwintered in O. edulis, with P. grani existing only as resting eggs in the sediment. The increase in temperature in spring controlled and synchronized both the release of M refringens sporangia in the oyster feces, and the hatching of the benthic resting eggs of the copepod. Infection of oysters by M refringens was limited to June, July and August, coinciding with (1) the highest temperature recorded in the claire, and (2) the highest abundance of P. grani. PCR detection of M refringens in P. grani during the summer period was linked to the release of parasite sporangia by the oyster. Our results are supported by previous results on the effective transmission of this parasite from the oyster to the copepod.
Resumo:
Apoptosis is a fundamental feature in the development of many organisms and tissue systems. It is also a mechanism of host defense against environmental stress factors or pathogens by contributing to the elimination of infected cells. Hemocytes play a key role in defense mechanisms in invertebrates and previous studies have shown that physical or chemical stress can increase apoptosis in hemocytes in mollusks. However this phenomenon has rarely been investigated in bivalves especially in the flat oyster Ostrea edulis. The apoptotic response of hemocytes from flat oysters, O. edulis, was investigated after exposure to UV and dexamethasone, two agents known to induce apoptosis in vertebrates. Flow cytometry and microscopy were combined to demonstrate that apoptosis occurs in flat oyster hemocytes. Investigated parameters like intracytoplasmic calcium activity, mitochondrial membrane potential and phosphatidyl-serine externalization were significantly modulated in cells exposed to UV whereas dexamethasone only induced an increase of DNA fragmentation. Morphological changes were also observed on UV-treated cells using fluorescence microscopy and transmission electron microscopy. Our results confirm the apoptotic effect of UV on hemocytes of O. edulis and suggest that apoptosis is an important mechanism developed by the flat oyster against stress factors.
Resumo:
The present study identifies quantitative trait loci (QTLs) in response to an experimental infection with the parasite responsible for bonamiosis, Bonamia ostreae, in two segregating families of the European flat oyster, Ostrea edulis. We first constructed a genetic-linkage map for each studied family and improved the existing genetic-linkage map for the European flat oyster with a set of SNP markers. This latter map now combines the best accuracy and the best estimate of the genome coverage available for an oyster species. Secondly, by comparing the QTLs detected in this study with those previously published for O. edulis in similar experimental conditions, we identified several potential QTLs that were identical between the different families, and also new specific QTLs. We also detected, within the confidence interval of several QTL regions, some previously predicted candidate genes differentially expressed during an infection with B. ostreae, providing new candidate genome regions which should now be studied more specifically.
Resumo:
The flat oyster Ostrea edulis is native to Europe and populations have been severely depleted by the parasite Bonamia ostreae since the 1980s. Additional genetic markers are required to improve population genetics study and linkage map development for selection for B. ostrea-resistance in this species. Here, we characterized 27 novel microsatellite loci for O. edulis. Number of alleles per locus ranged from 6 to 25 and observed heterozygosity between 0.375 and 1. Null alleles were suggested at a few loci but most loci were in Hardy-Weinberg agreement enabling their reliable use in further population and mapping genetics approaches.