4 resultados para fish diversity

em Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer


Relevância:

70.00% 70.00%

Publicador:

Resumo:

For decades, global climate change has directly and indirectly affected the structure and function of ecosystems. Abrupt changes in biodiversity have been observed in response to linear or sudden modifications to the environment. These abrupt shifts can cause long-term reorganizations within ecosystems, with communities exhibiting new functional responses to environmental factors. Over the last 3 decades, the Gironde estuary in southwest France has experienced 2 abrupt shifts in both the physical and chemical environments and the pelagic community. Rather than describing these shifts and their origins, we focused on the 3 inter-shift periods, describing the structure of the fish community and its relationship with the environment during these periods. We described fish biodiversity using a limited set of descriptors, taking into account both species composition and relative species abundances. Inter-shift ecosystem states were defined based on the relationship between this description and the hydro-physico-chemical variables and climatic indices defining the main features of the environment. This relationship was described using generalized linear mixed models on the entire time series and for each inter-shift period. Our results indicate that (1) the fish community structure has been significantly modified, (2) environmental drivers influencing fish diversity have changed during these 3 periods, and (3) the fish-environment relationships have been modified over time. From this, we conclude a regime shift has occurred in the Gironde estuary. We also highlight that anthropogenic influences have increased, which re-emphasizes the importance of local management in maintaining fish diversity and associated goods and services within the context of climate change.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Animal-associated microbiotas form complex communities, which are suspected to play crucial functions for their host fitness. However, the biodiversity of these communities, including their differences between host species and individuals, has been scarcely studied, especially in case of skin-associated communities. In addition, the intraindividual variability (i.e. between body parts) has never been assessed to date. The objective of this study was to characterize skin bacterial communities of two teleostean fish species, namely the European seabass (Dicentrarchus labrax) and gilthead seabream (Sparus aurata), using a high-throughput DNA sequencing method. In order to focus on intrinsic factors of host-associated bacterial community variability, individuals of the two species were raised in controlled conditions. Bacterial diversity was assessed using a set of four complementary indices, describing the taxonomic and phylogenetic facets of biodiversity and their respective composition (based on presence/absence data) and structure (based on species relative abundances) components. Variability of bacterial diversity was quantified at the interspecific, interindividual and intraindividual scales. We demonstrated that fish surfaces host highly diverse bacterial communities, whose composition was very different from that of surrounding bacterioplankton. This high total biodiversity of skin-associated communities was supported by the important variability, between host species, individuals and the different body parts (dorsal, anal, pectoral and caudal fins).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Climate change challenges the capacity of fishes to thrive in their habitat. However, through phenotypic diversity, they demonstrate remarkable resilience to deteriorating conditions. In fish populations, inter-individual variation in a number of fitness-determining physiological traits, including cardiac performance, is classically observed. Information about the cellular bases of inter-individual variability in cardiac performance is scarce including the possible contribution of excitation-contraction (EC) coupling. This study aimed at providing insight into EC coupling-related Ca2+ response and thermal plasticity in the European sea bass (Dicentrarchus labrax). A cell population approach was used to lay the methodological basis for identifying the cellular determinants of cardiac performance. Fish were acclimated at 12 and 22 A degrees C and changes in intracellular calcium concentration ([Ca2+](i)) following KCl stimulation were measured using Fura-2, at 12 or 22 A degrees C-test. The increase in [Ca2+](i) resulted primarily from extracellular Ca2+ entry but sarcoplasmic reticulum stores were also shown to be involved. As previously reported in sea bass, a modest effect of adrenaline was observed. Moreover, although the response appeared relatively insensitive to an acute temperature change, a difference in Ca2+ response was observed between 12- and 22 A degrees C-acclimated fish. In particular, a greater increase in [Ca2+](i) at a high level of adrenaline was observed in 22 A degrees C-acclimated fish that may be related to an improved efficiency of adrenaline under these conditions. In conclusion, this method allows a rapid screening of cellular characteristics. It represents a promising tool to identify the cellular determinants of inter-individual variability in fishes' capacity for environmental adaptation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Small-scale spatial and temporal variability in animal abundance is an intrinsic characteristic of marine ecosystems but remains largely unknown for most animals, including coral reef fishes. In this study, we used a remote autonomous unbaited video system and recorded reef fish assemblages during daylight hours, 10 times a day for 34 consecutive days in a branching coral patch of the lagoon of New Caledonia. In total, 50 031 fish observations belonging to 114 taxa, 66 genera and 31 families were recorded in 256 recorded videos. Carnivores and herbivore-detritus feeders dominated the trophic structure. We found significant variations in the composition of fish assemblages between times of day. Taxa richness and fish abundance were greater in the early morning and in the late afternoon than during the day. Fourteen taxa displayed well-defined temporal patterns in abundance with one taxon influenced by time of day, six influenced by tidal state and seven influenced by both time of day and tidal state. None of these 14 taxa were piscivores, 10 were herbivore-detritus feeders, three were carnivores and one was plankton feeder. Our results suggest a diel migration from feeding grounds to shelter areas and highlight the importance of taking into account small-scale temporal variability in animal diversity and abundance when studying connectivity between habitats and monitoring communities.