2 resultados para fillet weld
em Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer
Resumo:
A lean muscle line (L) and a fat muscle line (F) of rainbow trout were established (Quillet et al., 2005) by a two-way selection for muscle lipid content performed on pan-size rainbow trout using a non-destructive measurement of muscle lipid content (Distell Fish Fat Meter®). The aim of the present study was to evaluate the consequences of this selective breeding on flesh quality of pan size (290 g) diploid and triploid trout after three generations of selection. Instrumental evaluations of fillet color and pH measurement were performed at slaughter. Flesh color, pH, dry matter content and mechanical resistance were measured at 48 h and 96 h postmortem on raw and cooked flesh, respectively. A sensorial profile analysis was performed on cooked fillets. Fillets from the selected fatty muscle line (F) had a higher dry matter content and were more colorful for both raw and cooked fillets. Mechanical evaluation indicated a tendency of raw flesh from F fish to be less firm, but this was not confirmed after cooking, neither instrumentally or by sensory analysis. The sensory analysis revealed higher fat loss, higher intensity of flavor of cooked potato, higher exudation, higher moisture content and a more fatty film left on the tongue for flesh from F fish. Triploid fish had mechanically softer raw and cooked fillets, but the difference was not perceived by the sensorial panel. The sensorial evaluation also revealed a lower global intensity of odor, more exudation and a higher moisture content in the fillets from triploid fish. These differences in quality parameters among groups of fish were associated with larger white muscle fibers in F fish and in triploid fish. The data provide additional information about the relationship between muscle fat content, muscle cellularity and flesh quality.
Resumo:
The quality of fish cultured using recycling units may differ from that of fish from outdoor farming units due to a range of deviating environmental determinants. This applies not only to flesh quality but also to morphological (processing) traits. This study evaluates processing yields of sibling fish cultured in two different farming units: (i) an outdoor pond aquaculture system with a flow-through regime (24.6 ± 0.2°C), and (ii) indoor tanks using a recirculation aquaculture system (RAS; 26.0 ± 1.0°C). Clear differences were observed in the most important processing traits, i.e. skinned trunk and fillet yields, which were both significantly higher (P < 0.01) in RAS fish due to significantly smaller (P < 0.05) head weight in fish of the flow-through system. Skin represented a significantly higher (P < 0.01) proportion of total weight in both RAS males and females. The most obvious difference was in the deposited fat weight, which was significantly higher (P < 0.01) in RAS fish. Visceral fat deposits were significantly higher (P < 0.01) in females and ventral and dorsal fat deposits higher (P > 0.05) in males.