2 resultados para extérieur

em Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Scientific scallop surveys called COMOR are carried out in the bay of Seine since 1976. Results are used by fishermen’ associations and by fishing administration to lead management measures. In this report, the scientific results of the survey COMOR 32 realised in July 2002 are described. Abundance and growth indices for scallop, by age and area, are presented. During these surveys, data about most abundant benthic species are also collected since 1998. A first assessment with five years data is made here. A global descriptive analysis is undertaken about all the species present on scallops grounds. A special zoom is applied on both species whitch could be exploited (whelk Buccinum undatum and queen scallop Aequipecten opercularis) and three competitive species (starfish Asterias rubens, American slipper-limpet Crepidula fornicata and brittle star Ophiothrix fragilis)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effect of fish farming on dissolved amino acid concentrations, bacterioplankton abundance and exoproteolytic activity was assessed in 3 experimental marine ponds. Different standing stocks of fish were introduced (semi-intensive pond: 250 g.m(-2); semi-extensive pond: 50 g.m(-2) control pond: 0). Sea bass farming increased dissolved combined amino acid (DCAA) concentrations only in the semi-intensive pond. Bacterial standing stock was unaffected by fish food supply. However, bacterial exoproteolytic activity was strongly stimulated by aquaculture intensification; the average maximal rate of dissolved protein hydrolysis (V-m) increased with intensity (control pond: 1 500 nM.h(-1); semi-extensive pond: 2 600 nM.h(-1) semi-intensive pond: 5 100 nM.h(-1)). DCAA fluxes through bacterial exoproteolytic activity ranged between 16 (semi-extensive) and 11% (semi-intensive) of the daily nitrogen input by fish food. Bacterial exoproteolytic activity allowed a substantial part of the increased supply of dissolved amino nitrogen to be incorporated into bacterial biomass, then available for transfer to higher trophic levels within the ponds. It also significantly decreased dissolved organic nitrogen export from the ponds to the surrounding environment.