2 resultados para diurnal surface currents
em Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer
Resumo:
A radar scatterometer operates by transmitting a pulse of microwave energy toward the ocean's surface and measuring the normalized (per-unit-surface) radar backscatter coefficient (σ°). The primary application of scatterometry is the measurement of near-surface ocean winds. By combining σ° measurements from different azimuth angles, the 10 m vector wind can be determined through a Geophysical Model Function (GMF), which relates wind and backscatter. This paper proposes a mission concept for the measurement of both oceanic winds and surface currents, which makes full use of earlier C-band radar remote sensing experience. For the determination of ocean currents, in particular, the novel idea of using two chirps of opposite slope is introduced. The fundamental processing steps required to retrieve surface currents are given together with their associated accuracies. A detailed description of the mission proposal and comparisons between real and retrieved surface currents are presented. The proposed ocean Doppler scatterometer can be used to generate global surface ocean current maps with accuracies better than 0.2 m/s at a spatial resolution better than 25 km (i.e., 12.5 km spatial sampling) on a daily basis. These maps will allow gaining some insights on the upper ocean mesoscale dynamics. The work lies at a frontier, given that the present inability to measure ocean currents from space in a consistent and synoptic manner represents one of the greatest weaknesses in ocean remote sensing.
Resumo:
This study investigates the structure and intensity of the surface pathways connecting to and from the central areas of the large-scale convergence regions of the eastern Pacific Ocean. Surface waters are traced with numerical Lagrangian particles transported in the velocity field of three different ocean models with horizontal resolutions that range from ¼° to 1/32°. The connections resulting from the large-scale convergent Ekman dynamics agree qualitatively but are strongly modulated by eddy variability that introduces meridional asymmetry in the amplitude of transport. Lagrangian forward-in-time integrations are used to analyze the fate of particles originating from the central regions of the convergence zones and highlight specific outflows not yet reported for the southeastern Pacific when using the currents at the highest resolutions (1/12° and 1/32°). The meridional scales of these outflows are comparable to the characteristic width of the fine-scale striation of mean currents.