3 resultados para distribution patterns

em Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Deep-sea ferromanganese nodules accumulate trace elements from seawater and underlying sediment porewaters during the growth of concentric mineral layers over millions of years. These trace elements have the potential to record past ocean geochemical conditions. The goal of this study was to determine whether Fe mineral alteration occurs and how the speciation of trace elements responds to alteration over ∼3.7 Ma of marine ferromanganese nodule (MFN) formation, a timeline constrained by estimates from 9Be/10Be concentrations in the nodule material. We determined Fe-bearing phases and Fe isotope composition in a South Pacific Gyre (SPG) nodule. Specifically, the distribution patterns and speciation of trace element uptake by these Fe phases were investigated. The time interval covered by the growth of our sample of the nodule was derived from 9Be/10Be accelerator mass spectrometry (AMS). The composition and distribution of major and trace elements were mapped at various spatial scales, using micro-X-ray fluorescence (μXRF), electron microprobe analysis (EMPA), and inductively coupled plasma mass spectrometry (ICP-MS). Fe phases were characterized by micro-extended X-ray absorption fine structure (μEXAFS) spectroscopy and micro-X-ray diffraction (μXRD). Speciation of Ti and V, associated with Fe, was measured using micro-X-ray absorption near edge structure (μXANES) spectroscopy. Iron isotope composition (δ56/54Fe) in subsamples of 1-3 mm increments along the radius of the nodule was determined with multiple-collector ICP-MS (MC-ICP-MS). The SPG nodule formed through primarily hydrogeneous inputs at a rate of 4.0 ± 0.4 mm/Ma. The nodule exhibited a high diversity of Fe mineral phases: feroxyhite (δ-FeOOH), goethite (α-FeOOH), lepidocrocite (γ-FeOOH), and poorly ordered ferrihydrite-like phases. These findings provide evidence that Fe oxyhydroxides within the nodule undergo alteration to more stable phases over millions of years. Trace Ti and V were spatially correlated with Fe and found to be adsorbed to Fe-bearing minerals. Ti/Fe and V/Fe ratios, and Ti and V speciation, did not vary along the nodule radius. The δ56/54Fe values, when averaged over sample increments representing 0.25 to 0.75 Ma, were homogeneous within uncertainty along the nodule radius, at -0.12 ± 0.07 ‰ (2sd, n=10). Our results indicate that the Fe isotope composition of the nodule remained constant during nodule growth and that mineral alteration did not affect the primary Fe isotope composition of the nodule. Furthermore, the average δ56/54Fe value of -0.12 ‰ we find is consistent with Fe sourced from continental eolian particles (dust). Despite mineral alteration, the trace element partitioning of Ti and V, and Fe isotope composition, do not appear to change within the sensitivity of our measurements. These findings suggest that Fe oxyhydroxides within hydrogenetic ferromanganese nodules are out of geochemical contact with seawater once they are covered by subsequent concentric mineral layers. Even though Fe-bearing minerals are altered, trace element ratios, speciation and Fe isotope composition are preserved within the nodule.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An inactive vent field comprised of dead chimneys was discovered on the ultrafast East Pacific Rise (EPR) at 18°S during the research campaign NAUDUR with the R/V Le Nadir in December 1993. One of these chimneys was sampled, studied and found to be largely composed of silica-mineralized bacterial-like filaments. The filaments are inferred to be the result of microbial activity leading to silica (± Fe-oxyhydroxide) precipitation. The chimney grew from the most external layer (precipitated 226 ± 4 yr. B.P.) towards the central chimney conduit. Hydrothermal activity ceased 154 ± 13 yr. B.P. and the chimney conduit was completely sealed. Mixing between an end-member hydrothermal fluid and seawater explains the Sr–Nd isotopic composition of the chimney. Seawater was the major source of Sr to the chimney, whereas the dominant Nd source was the local mid-ocean ridge basalt (MORB) leached by the hydrothermal fluids. The mixing scenarios point to a dynamic hydrothermal system with fluctuating fluid compositions. The proportion of seawater within the venting fluid responsible for the precipitation of the silica chimney layers varied between 94 and 85%. Pb-isotope data indicates that all of the Pb in the chimney was derived from the underlying MORB. The precipitation temperatures of the chimney layers varied between 55 and 71 °C, and were a function of the seawater/end-member hydrothermal fluid mixing ratio. δ30Si correlates with the temperature of precipitation implying that temperature is one of the major controls of the Si-isotope composition of the chimney. Concentrations of elements across the chimney wall were a function of this mixing ratio and the composition of the end-member hydrothermal fluid. The inward growth of the chimney wall and accompanying decrease in wall permeability resulted in an inward decrease in the seawater/hydrothermal fluid mixing ratio, which in turn exerted a control on the concentrations of the elements supplied mainly by the hydrothermal fluids. The silica chimney is significantly enriched in U, likely a result of bacterial concentration of U from the seawater-dominated vent fluid. The chimney is poor in rare earth elements (REE). It inherited its REE distribution patterns from the parent end-member hydrothermal fluids. The dilution of the hydrothermal fluid with over 85% seawater could not obliterate the particular REE features (positive Eu anomaly) of the hydrothermal fluids.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Deep-sea hydrothermal-vent habitats are typically linear, discontinuous, and short-lived. Some of the vent fauna such as the endemic polychaete family Alvinellidae are thought to lack a planktotrophic larval stage and therefore not to broadcast-release their offspring. The genetic evidence points to exchanges on a scale that seems to contradict this type of reproductive pattern. However, the rift valley may topographically rectify the bottom currents, thereby facilitating the dispersal of propagules between active vent sites separated in some cases by 10s of kilometers or more along the ridge axis. A propagule flux model based on a matrix of intersite distances, long-term current-meter data, and information on the biology and ecology of Alvinellidae was developed to test this hypothesis. Calculations of the number of migrants exchanged between two populations per generation (N-m) allowed comparisons with estimates obtained from genetic studies. N, displays a logarithmic decrease with increasing dispersal duration and reaches the critical value of 1 after 8 d when the propagule Aux model was run in standard conditions. At most, propagule traveling time cannot reasonably exceed 15-30 d, according to the model, whereas reported distances between sites would require longer lasting dispersal abilities. Two nonexclusive explanations are proposed. First, some aspects of the biology of Alvinellidae have been overlooked and long-distance dispersal does occur. Second, such dispersal never occurs in Alvinellidae, but the spatial-temporal dynamics of vent sites over geological timescales allows short-range dispersal processes to maintain gene flow.