2 resultados para data-mining application
em Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer
Resumo:
This document does NOT address the issue of oxygen data quality control (either real-time or delayed mode). As a preliminary step towards that goal, this document seeks to ensure that all countries deploying floats equipped with oxygen sensors document the data and metadata related to these floats properly. We produced this document in response to action item 14 from the AST-10 meeting in Hangzhou (March 22-23, 2009). Action item 14: Denis Gilbert to work with Taiyo Kobayashi and Virginie Thierry to ensure DACs are processing oxygen data according to recommendations. If the recommendations contained herein are followed, we will end up with a more uniform set of oxygen data within the Argo data system, allowing users to begin analysing not only their own oxygen data, but also those of others, in the true spirit of Argo data sharing. Indications provided in this document are valid as of the date of writing this document. It is very likely that changes in sensors, calibrations and conversions equations will occur in the future. Please contact V. Thierry (vthierry@ifremer.fr) for any inconsistencies or missing information. A dedicated webpage on the Argo Data Management website (www) contains all information regarding Argo oxygen data management : current and previous version of this cookbook, oxygen sensor manuals, calibration sheet examples, examples of matlab code to process oxygen data, test data, etc..
Resumo:
Oysters play an important role in estuarine and coastal marine habitats, where the majority of humans live. In these ecosystems, environmental degradation is substantial, and oysters must cope with highly dynamic and stressful environmental constraints during their lives in the intertidal zone. The availability of the genome sequence of the Pacific oyster Crassostrea gigas represents a unique opportunity for a comprehensive assessment of the signal transduction pathways that the species has developed to deal with this unique habitat. We performed an in silico analysis to identify, annotate and classify protein kinases in C. gigas, according to their kinase domain taxonomy classification, and compared with kinome already described in other animal species. The C. gigas kinome consists of 371 protein kinases, making it closely related to the sea urchin kinome, which has 353 protein kinases. The absence of gene redundancy in some groups of the C. gigas kinome may simplify functional studies of protein kinases. Through data mining of transcriptomes in C. gigas, we identified part of the kinome which may be central during development and may play a role in response to various environmental factors. Overall, this work contributes to a better understanding of key sensing pathways that may be central for adaptation to a highly dynamic marine environment.