2 resultados para climate-change impacts

em Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Projections of the impacts of climate change on marine ecosystems are a key prerequisite for the planning of adaptation strategies, yet they are inevitably associated with uncertainty. Identifying, quantifying, and communicating this uncertainty is key to both evaluating the risk associated with a projection and building confidence in its robustness. We review how uncertainties in such projections are handled in marine science. We employ an approach developed in climate modelling by breaking uncertainty down into (i) structural (model) uncertainty, (ii) initialization and internal variability uncertainty, (iii) parametric uncertainty, and (iv) scenario uncertainty. For each uncertainty type, we then examine the current state-of-the-art in assessing and quantifying its relative importance. We consider whether the marine scientific community has addressed these types of uncertainty sufficiently and highlight the opportunities and challenges associated with doing a better job. We find that even within a relatively small field such as marine science, there are substantial differences between subdisciplines in the degree of attention given to each type of uncertainty. We find that initialization uncertainty is rarely treated explicitly and reducing this type of uncertainty may deliver gains on the seasonal-to-decadal time-scale. We conclude that all parts of marine science could benefit from a greater exchange of ideas, particularly concerning such a universal problem such as the treatment of uncertainty. Finally, marine science should strive to reach the point where scenario uncertainty is the dominant uncertainty in our projections.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A spatially explicit coupled hydrodynamic-biogeochemical model was developed to study a coastal ecosystem under the combined effects of mussel aquaculture, nutrient loading and climate change. The model was applied to St Peter's Bay (SPB), Prince Edward Island, Eastern Canada. Approximately 40 % of the SPB area is dedicated to mussel (Mytilus edulis) longline culture. Results indicate that the two main food sources for mussels, phytoplankton and organic detritus, are most depleted in the central part of the embayment. Results also suggest that the system is near its ultimate capacity, a state where the energy cycle is restricted to nitrogen-phytoplankton-detritus-mussels with few resources left to be transferred to higher trophic levels. Annually, mussel meat harvesting extracts nitrogen (N) resources equivalent to 42 % of river inputs or 46.5 % of the net phytoplankton primary production. Under such extractive pressure, the phytoplankton biomass is being curtailed to 1980's levels when aquaculture was not yet developed and N loading was half the present level. Current mussel stocks also decrease bay-scale sedimentation rates by 14 %. Finally, a climate change scenario (year 2050) predicted a 30 % increase in mussel production, largely driven by more efficient utilization of the phytoplankton spring bloom. However, the predicted elevated summer temperatures (> 25 A degrees C) may also have deleterious physiological effects on mussels and possibly increase summer mortality levels. In conclusion, cultivated bivalves may play an important role in remediating the negative impacts of land-derived nutrient loading. Climate change may lead to increases in production and ecological carrying capacity as long as the cultivated species can tolerate warmer summer conditions.