2 resultados para cardiac cellular model
em Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer
Resumo:
Ionic (Na+, K+, Cl-, PO43-, pH), total CO2, total calcium and protein concentrations in the plasma and endolymph of the inner ear were compared in trout Oncorhynchus mykiss and turbot Scophthalmus maximus. In both species, saccular endolymph was characterized by high levels of K+ and total CO2 and in trout by an alkaline pH, The kinetic characteristics of proton secretion across the saccular epithelium of trout were investigated using a titration technique in which isolated saccules were mounted as closed sacs. The rate of proton secretion depends strongly on the pH of the Ringer's solution and secretion stops at a pH below 7.2, Proton secretion is driven by an energy-dependent mechanism involving basolateral ouabain-sensitive Na+/K+ exchangers. Proton secretion was partially inhibited by acetazolamide and completely inhibited in Na+-free Ringer or in the presence of 1 mmol l(-1) amiloride. A cellular model stressing the importance of proton exchange through the saccular epithelium is proposed to explain the regulation of endolymph pH, a crucial factor for the deposition of otolith calcium.
Resumo:
Climate change challenges the capacity of fishes to thrive in their habitat. However, through phenotypic diversity, they demonstrate remarkable resilience to deteriorating conditions. In fish populations, inter-individual variation in a number of fitness-determining physiological traits, including cardiac performance, is classically observed. Information about the cellular bases of inter-individual variability in cardiac performance is scarce including the possible contribution of excitation-contraction (EC) coupling. This study aimed at providing insight into EC coupling-related Ca2+ response and thermal plasticity in the European sea bass (Dicentrarchus labrax). A cell population approach was used to lay the methodological basis for identifying the cellular determinants of cardiac performance. Fish were acclimated at 12 and 22 A degrees C and changes in intracellular calcium concentration ([Ca2+](i)) following KCl stimulation were measured using Fura-2, at 12 or 22 A degrees C-test. The increase in [Ca2+](i) resulted primarily from extracellular Ca2+ entry but sarcoplasmic reticulum stores were also shown to be involved. As previously reported in sea bass, a modest effect of adrenaline was observed. Moreover, although the response appeared relatively insensitive to an acute temperature change, a difference in Ca2+ response was observed between 12- and 22 A degrees C-acclimated fish. In particular, a greater increase in [Ca2+](i) at a high level of adrenaline was observed in 22 A degrees C-acclimated fish that may be related to an improved efficiency of adrenaline under these conditions. In conclusion, this method allows a rapid screening of cellular characteristics. It represents a promising tool to identify the cellular determinants of inter-individual variability in fishes' capacity for environmental adaptation.