5 resultados para biofouling
em Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer
Resumo:
The main aim for this document is to report after the Biofouling Monitoring Program (BMP) aiming at identifying major organisms responsible for biofouling in different geographical areas, as an input to the development and application of a more suitable approach to any specific region. This report is strongly linked to the JERICO deliverable D4.3 “Report on Biofouling Prevention Methods”, available at http://www.jerico-fp7.eu/deliverables/d4-3-report-on-biofouling-prevention-methods.
Resumo:
Oceans environmental monitoring and seafloor exploitation need in situ sensors and optical devices (cameras, lights) in various locations and on various carriers in order to initiate and to calibrate environmental models or to operate underwater industrial process supervision. For more than 10 years Ifremer deploys in situ monitoring systems for various seawater parameters and in situ observation systems based on lights and HD Cameras. To be economically operational, these systems must be equipped with a biofouling protection dedicated to the sensors and optical devices used in situ. Indeed, biofouling, in less than 15 days [1] will modify the transducing interfaces of the sensors and causes unacceptable bias on the measurements provided by the in situ monitoring system. In the same way biofouling will decrease the optical properties of windows and thus altering the lighting and the quality fot he images recorded by the camera.
Resumo:
Sponges are a rich source for investigation of bioactive small molecules. They have been mostly investigated for the search of new pharmacological models or therapeutic agents for the treatment of human diseases. Micro-organisms can also represent a virulent pathogen for marine invertebrates such as sponges, which need to protect themselves against these microbes. Sponges' self defence mechanisms involving dialogue molecules thus represent a pertinent research track for potent anti-infective and anti-biofilm activities such as quorum sensing inhibitors (QSIs). The investigation of the QSI crude extract of Leucetta chagosensis Dendy, 1863 led to the isolation of three new alkaloids, isonaamine D, di-isonaamidine A and leucettamine D, along with the known isonaamine A and isonaamidine A. Isonaamidine A and isonaamine D were identified as inhibitors of the three quorum sensing pathways of Vibrio harveyi (CAI-1, AI-2 and harveyi auto inducer), but isonaamidine A displayed the strongest activity on AI-2 biosensor. Both compounds are new examples of natural QSIs of V. harveyi. These results outline the importance of these secondary metabolites for their producing organisms themselves in their natural environment, as well as the potential of the marine resource for aquaculture needs.
Resumo:
The 42th meeting of the ICES Working Group on Introductions and Transfers of Marine Organisms (WGITMO) was held in Olbia, Italy, 16–18 March 2016, with Anna Occhipinti-Ambrogi as host and Henn Ojaveer as chairperson. Representatives from 19 countries participated in the meeting. Attendants were from Belgium, Canada, Dennark, Estonia, Finland, France, Germany, Ireland, Israel, Italy, Lithuania, Norway, Poland, Portugal, Russia, Spain, Sweden, United Kingdom and United States. Sweden contributed by cor-respondence. The objectives of the meeting were to update information and discuss several aspects related to the introductions and transfers of non-indigenous aquatic species. Data and information management were two of the discussion topics of the meeting, with special focus on the better exploitation of the ‘Information system on aquatic non-indigenous and cryptogenic species’ (AquaNIS). The WGITMO also dedicated time for addressing the MSFD D2 issues: indicator on new non-indigenous species introduced by human activities, and opportunities and problems related to cross-regional comparison of non-indigenous species indicators. Preparation of the manuscript of the alert report on sea squirt Didemnum vexillum, which is to be published in ICES CRR series, was discussed and the steps to be taken to finalise the report were agreed. As usual, adequate time was devoted to discuss national reports, to exchange of information on the management of NIS and to review ongoing and planned research activities. The approach taken during the meeting facilitated presentations and discussions on the issues of relevance related to the Terms of References as well as on a few generic and strategically-important issues of general relevance to bioinvasions. The meeting began with a full-day joint meeting with the Working Group on Ballast and Other Ship Vectors (WGBOSV), which provided an opportunity to discuss and address issues of common interest, such as shipping and biofouling as introduction vectors. The proposed ICES demonstration advice on ‘Risk management of non-indigenous species associated with shipping in the Arctic’ was discussed, and edits were suggested for both the orientation of the demonstration advice as well as for the exact questions to be asked. Both working groups agreed that the practice of conducting back-to-back meetings with one joint day is useful and will continue in 2017. All Terms of References to be addressed for 2016 were discussed. For some Terms of Ref-erence, more detailed presentations were given, and a short overview of the information and subsequent discussion is provided herein at the end of each section. This report is structured so that each Term of Reference is dealt with in sequential order. The main body of the report contains summaries of the presentations and discussions with the more detailed documents being contained in the Annexes. WGITMO progressed each of the Terms of Reference by either completing the task or clearly identifying and agreeing on the inter-sessional activities required to still finalise the work in 2016. From 2017, WGITMO will be shifted to multi-annual management.
Resumo:
Stainless steel is widely used in seawater reverse osmosis units (SWRO) for both good mechanical and corrosion resistance properties. However, many corrosion failures of stainless steel in SWRO desalination units have been reported. These failures may often be attributed to un-adapted stainless steel grade selection and/or to the particular aggressive seawater conditions in "warm" regions (high ambient temperature, severe biofouling, etc.). Cathodic protection (CP) is a well-known efficient system to prevent corrosion of metallic materials in seawater. It is successfully used in the oil and gas industry to protect carbon steel structures exposed in open-sea. However, the specific service conditions of SWRO units may seriously affect the efficiency of such anti-corrosion system (high flow rates, large stainless steel surfaces affected by biofouling, confinement limiting protective cathodic current flow, etc.). Hence, CP in SWRO units should be considered with special care and modeling appears as useful tool to assess an appropriate CP design. However, there is a clear lack of CP data that could be transposed to SWRO service conditions (i.e. stainless steel, effect of biofouling, high flow rate, etc.). From this background a Join Industry Program was initiated including laboratory exposures, field measurements in a full scale SWRO desalination plant, and modeling work using PROCOR software. The present paper reviews the main parameters affecting corrosion of stainless steel alloys in seawater reverse osmosis units. CP on specific stainless steel devices was investigated in order to assess its actual efficiency for SWRO units. Severe environmental conditions were intentionally used to promote corrosion on the tested stainless steel products in order to evaluate the efficiency of CP. The study includes a modeling work aiming at predicting and designing adapted CP protection to modeled stainless steel units. An excellent correlation between modeling work and field measurements was found.