6 resultados para Wind-wave

em Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Wind-generated waves in the Kara, Laptev, and East-Siberian Seas are investigated using altimeter data from Envisat RA-2 and SARAL-AltiKa. Only isolated ice-free zones had been selected for analysis. Wind seas can be treated as pure wind-generated waves without any contamination by ambient swell. Such zones were identified using ice concentration data from microwave radiometers. Altimeter data, both significant wave height (SWH) and wind speed, for these areas were further obtained for the period 2002-2012 using Envisat RA-2 measurements, and for 2013 using SARAL-AltiKa. Dependencies of dimensionless SWH and wavelength on dimensionless wave generation spatial scale are compared to known empirical dependencies for fetch-limited wind wave development. We further check sensitivity of Ka- and Ku-band and discuss new possibilities that AltiKa's higher resolution can open.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The wave generation model based on the rapid distortion concept significantly underestimates empirical values of the wave growth rate. As suggested before, inclusion of the aerodynamic roughness modulations effect on the amplitude of the slope-correlated surface pressure could potentially reconcile this model approach with observations. This study explores the role of short-scale breaking modulations to amplify the growth rate of modulating longer waves. As developed, airflow separations from modulated breaking waves result in strong modulations of the turbulent stress in the inner region of the modulating waves. In turn, this leads to amplifying the slope-correlated surface pressure anomalies. As evaluated, such a mechanism can be very efficient for enhancing the wind-wave growth rate by a factor of 2-3.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A method for systematically tracking swells across oceanic basins is developed by taking advantage of high-quality data from space-borne altimeters and wave model output. The evolution of swells is observed over large distances based on 202 swell events with periods ranging from 12 to 18 s. An empirical attenuation rate of swell energy of about 4 × 10−7 m−1 is estimated using these observations, and the nonbreaking energy dissipation rates of swells far away from their generating areas are also estimated using a point source model. The resulting acceptance range of nonbreaking dissipation rates is −2.5 to 5.0 × 10−7 m−1, which corresponds to a dissipation e-folding scales of at least 2000 km for steep swells, to almost infinite for small-amplitude swells. These resulting rates are consistent with previous studies using in-situ and synthetic aperture radar (SAR) observations. The frequency dispersion and angular spreading effects during swell propagation are discussed by comparing the results with other studies, demonstrating that they are the two dominant processes for swell height attenuation, especially in the near field. The resulting dissipation rates from these observations can be used as a reference for ocean engineering and wave modeling, and for related studies such as air-sea and wind-wave-turbulence interactions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Swells are found in all oceans and strongly influence the wave climate and air-sea processes. The poorly known swell dissipation is the largest source of error in wave forecasts and hindcasts. We use synthetic aperture radar data to identify swell sources and trajectories, allowing a statistically significant estimation of swell dissipation. We mined the entire Envisat mission 2003–2012 to find suitable storms with swells (13 < T < 18 s) that are observed several times along their propagation. This database of swell events provides a comprehensive view of swell extending previous efforts. The analysis reveals that swell dissipation weakly correlates with the wave steepness, wind speed, orbital wave velocity, and the relative direction of wind and waves. Although several negative dissipation rates are found, there are uncertainties in the synthetic aperture radar-derived swell heights and dissipation rates. An acceptable range of the swell dissipation rate is −0.1 to 6 × 10−7 m−1 with a median of 1 × 10−7 m−1.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Over the past decade, the diminishing Arctic sea ice has impacted the wave field, which depends on the ice-free ocean and wind. This study characterizes the wave climate in the Arctic spanning 1992–2014 from a merged altimeter data set and a wave hindcast that uses CFSR winds and ice concentrations from satellites as input. The model performs well, verified by the altimeters, and is relatively consistent for climate studies. The wave seasonality and extremes are linked to the ice coverage, wind strength, and wind direction, creating distinct features in the wind seas and swells. The altimeters and model show that the reduction of sea ice coverage causes increasing wave heights instead of the wind. However, trends are convoluted by interannual climate oscillations like the North Atlantic Oscillation (NAO) and Pacific Decadal Oscillation. In the Nordic Greenland Sea the NAO influences the decreasing wind speeds and wave heights. Swells are becoming more prevalent and wind-sea steepness is declining. The satellite data show the sea ice minimum occurs later in fall when the wind speeds increase. This creates more favorable conditions for wave development. Therefore we expect the ice freeze-up in fall to be the most critical season in the Arctic and small changes in ice cover, wind speeds, and wave heights can have large impacts to the evolution of the sea ice throughout the year. It is inconclusive how important wave–ice processes are within the climate system, but selected events suggest the importance of waves within the marginal ice zone.