4 resultados para Wind speed extrapolation

em Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The transfer coefficients for momentum and heat have been determined for 10 m neutral wind speeds (U-10n) between 0 and 12 m/s using data from the Surface of the Ocean, Fluxes and Interactions with the Atmosphere (SOFIA) and Structure des Echanges Mer-Atmosphere, Proprietes des Heterogeneites Oceaniques: Recherche Experimentale (SEMAPHORE) experiments. The inertial dissipation method was applied to wind and pseudo virtual temperature spectra from a sonic anemometer, mounted on a platform (ship) which was moving through the turbulence held. Under unstable conditions the assumptions concerning the turbulent kinetic energy (TKE) budget appeared incorrect. Using a bulk estimate for the stability parameter, Z/L (where Z is the height and L is the Obukhov length), this resulted in anomalously low drag coefficients compared to neutral conditions. Determining Z/L iteratively, a low rate of convergence was achieved. It was concluded that the divergence of the turbulent transport of TKE was not negligible under unstable conditions. By minimizing the dependence of the calculated neutral drag coefficient on stability, this term was estimated at about -0.65Z/L. The resulting turbulent fluxes were then in close agreement with other studies at moderate wind speed. The drag and exchange coefficients for low wind speeds were found to be C-en x 10(3) = 2.79U(10n)(-1) + 0.66 (U-10n < 5.2 m/s), C-en x 10(3) = C-hn x 10(3) = 1.2 (U-10n greater than or equal to 5.2 m/s), and C-dn x 10(3) = 11.7U(10n)(-2) + 0.668 (U-10n < 5.5 m/s), which imply a rapid increase of the coefficient values as the wind decreased within the smooth flow regime. The frozen turbulence hypothesis and the assumptions of isotropy and an inertial subrange were found to remain valid at these low wind speeds for these shipboard measurements. Incorporation of a free convection parameterization had little effect.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Wind-generated waves in the Kara, Laptev, and East-Siberian Seas are investigated using altimeter data from Envisat RA-2 and SARAL-AltiKa. Only isolated ice-free zones had been selected for analysis. Wind seas can be treated as pure wind-generated waves without any contamination by ambient swell. Such zones were identified using ice concentration data from microwave radiometers. Altimeter data, both significant wave height (SWH) and wind speed, for these areas were further obtained for the period 2002-2012 using Envisat RA-2 measurements, and for 2013 using SARAL-AltiKa. Dependencies of dimensionless SWH and wavelength on dimensionless wave generation spatial scale are compared to known empirical dependencies for fetch-limited wind wave development. We further check sensitivity of Ka- and Ku-band and discuss new possibilities that AltiKa's higher resolution can open.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Ocean wind retrievals from satellite sensors are typically performed for the standard level of 10 m. This restricts their full exploitation for wind energy planning, which requires wind information at much higher levels where wind turbines operate. A new method is presented for the vertical extrapolation of satellite-based wind maps. Winds near the sea surface are obtained from satellite data and used together with an adaptation of the Monin–Obukhov similarity theory to estimate the wind speed at higher levels. The thermal stratification of the atmosphere is taken into account through a long-term stability correction that is based on numerical weather prediction (NWP) model outputs. The effect of the long-term stability correction on the wind profile is significant. The method is applied to Envisat Advanced Synthetic Aperture Radar scenes acquired over the south Baltic Sea. This leads to maps of the long-term stability correction and wind speed at a height of 100 m with a spatial resolution of 0.02°. Calculations of the corresponding wind power density and Weibull parameters are shown. Comparisons with mast observations reveal that NWP model outputs can correct successfully for long-term stability effects and also, to some extent, for the limited number of satellite samples. The satellite-based and NWP-simulated wind profiles are almost equally accurate with respect to those from the mast. However, the satellite-based maps have a higher spatial resolution, which is particularly important in nearshore areas where most offshore wind farms are built.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Aircraft altimeter and in situ measurements are used to examine relationships between altimeter backscatter and the magnitude of near-surface wind and friction velocities. Comparison of altimeter radar cross section with wind speed is made through the modified Chelton-Wentz algorithm. Improved agreement is found after correcting 10-m winds for both surface current and atmospheric stability. An altimeter friction velocity algorithm is derived based on the wind speed model and an open-ocean drag coefficient. Close agreement between altimeter- and in situ-derived friction velocities is found. For this dataset, quality of the altimeter inversion to surface friction velocity is comparable to that for adjusted winds and clearly better than the inversion to true 10-m wind speed.