2 resultados para Whole genome sequencing

em Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Low-molecular-weight fucoidan (LMWF) is a sulfated polysaccharide extracted from brown seaweed that presents antithrombotic and pro-angiogenic properties. However, its mechanism of action is not well-characterized. Here, we studied the effects of LMWF on cell signaling and whole genome expression in human umbilical vein endothelial cells and endothelial colony forming cells. We observed that LMWF and vascular endothelial growth factor had synergistic effects on cell signaling, and more interestingly that LMWF by itself, in the absence of other growth factors, was able to trigger the activation of the PI3K/AKT pathway, which plays a crucial role in angiogenesis and vasculogenesis. We also observed that the effects of LMWF on cell migration were PI3K/AKT-dependent and that LMWF modulated the expression of genes involved at different levels of the neovessel formation process, such as cell migration and cytoskeleton organization, cell mobilization and homing. This provides a better understanding of LMWF's mechanism of action and confirms that it could be an interesting therapeutic approach for vascular repair.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Global changes linked to increases in temperature and ocean acidification, but also to more direct anthropogenic influences such as aquaculture, have caused a worldwide increase in the reports of Vibrio-associated illnesses affecting humans and also animals such as shrimp and molluscs. Investigation of the emergence of Vibrio pathogenesis events requires the analysis of microbial evolution at the gene, genome and population levels, in order to identify genomic modifications linked to increased virulence, resistance and/or prevalence, or to recent host shift. From a more applied point of view, the elucidation of virulence mechanisms is a prerequisite to devising prophylactic methods to fight infectious agents. In comparison with human pathogens, fairly little is known about the requirements for virulence in vibrios pathogenic to animals. However, the advent of genome sequencing, especially next-generation technologies,the possibility of genetically manipulating most of the Vibrio strains, and the recent availability of standardised animals for experimental infections have now compensated for the considerable delay in advancement of the knowledge of non-model pathogens such as Vibrio and have led to new scientific questions.