2 resultados para WAVE BASIS-SET
em Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer
Resumo:
Personality traits have been studied for some decades in fish species. Yet, most often, studies focused on juveniles or adults. Thus, very few studies tried to demonstrate that traits could also be found in fish larvae. In this study, we aimed at identifying personality traits in Northern pike (Exos lucius) larvae. Twenty first-feeding larvae aged 21 days post hatch (16.1 +/− 0.4 mm in total length, mean +/− SD) were used to establish personality traits with two tests: a maze and a novel object. These tests are generally used for evaluating the activity and exploration of specimens as well as their activity and boldness, respectively. The same Northern pike twenty larvae were challenged in the two tests. Their performances were measured by their activity, their exploratory behaviour and the time spent in the different arms of the maze or near the novel object. Then, we used principal component analysis (PCA) and a hierarchical ascendant classification (HAC) for analysis of each data set separately. Finally, we used PCA reduction for the maze test data to analyse the relationship between a synthetic behavioural index (PCA1) and morphometric variables. Within each test, larvae could be divided in two sub groups, which exhibited different behavioural traits, qualified as bold (n = 7 for the maze test and n = 13 for the novel object test) or shy (n = 9 for the maze test and n = 11 for the novel object test). Nevertheless, in both tests, there was a continuum of boldness/shyness. Besides, some larvae were classified differently between the two tests but 40 % of the larvae showed cross context consistency and could be qualified as bold and/or proactive individuals. This study showed that it is possible to identify personality traits of very young fish larvae of a freshwater fish species.
Resumo:
Over the past decade, the diminishing Arctic sea ice has impacted the wave field, which depends on the ice-free ocean and wind. This study characterizes the wave climate in the Arctic spanning 1992–2014 from a merged altimeter data set and a wave hindcast that uses CFSR winds and ice concentrations from satellites as input. The model performs well, verified by the altimeters, and is relatively consistent for climate studies. The wave seasonality and extremes are linked to the ice coverage, wind strength, and wind direction, creating distinct features in the wind seas and swells. The altimeters and model show that the reduction of sea ice coverage causes increasing wave heights instead of the wind. However, trends are convoluted by interannual climate oscillations like the North Atlantic Oscillation (NAO) and Pacific Decadal Oscillation. In the Nordic Greenland Sea the NAO influences the decreasing wind speeds and wave heights. Swells are becoming more prevalent and wind-sea steepness is declining. The satellite data show the sea ice minimum occurs later in fall when the wind speeds increase. This creates more favorable conditions for wave development. Therefore we expect the ice freeze-up in fall to be the most critical season in the Arctic and small changes in ice cover, wind speeds, and wave heights can have large impacts to the evolution of the sea ice throughout the year. It is inconclusive how important wave–ice processes are within the climate system, but selected events suggest the importance of waves within the marginal ice zone.